
Proof Complexity for Circuit Classes

Klaus Aehlig

�

�

�

�
Comprehension in Propositional Proofs

• Extension Rule in Propositional Logic

p ↔ A

• several variables ; several rules needed

! irrespectively of whether the new variables are interdependent

• But dependencies make a big difference in computation

nO(1)

P/poly

nO(1)

AC
0

?
6O (1)

. . . and proof theory was always more interested in heights.

�

�

�

�
Comprehension (cont’d)

• Dependence matters ; have a rule that honours independence

Γ,¬(p1 ↔ ϕ1), . . . ,¬(pk ↔ ϕk)

Γ

−→p disjoint and new

• How does this influence height? What is this rule used for?

; Comprehension rule, in a setting with

Γ, A(−→a)

Γ,∀k
−→p A(−→p)

Γ, A(−→℘)

Γ,∃k
−→p A(−→p)

Note: only atoms as witnesses!

�

�

�

�
The Comprehension Axiom

...is provable for those ϕ we allow comprehension for.

. . . (pi ↔ ϕi),¬(pi ↔ ϕi) . . . ∧
k∧

k(pi ↔ ϕi),¬(p1 ↔ ϕ1), . . . ,¬(pk ↔ ϕk)
∃k

∃k
−→p

∧
k(pi ↔ ϕi),¬(p1 ↔ ϕ1), . . . ,¬(pk ↔ ϕk)

comprehension
∃k

−→p
∧

k(pi ↔ ϕi)

To relate the calculus to AC
0, we require the −→ϕ quantifier free.

�

�

�

�
Quantified Propositional Logic

• Have seen quantifier-rules and comprehension already

• Rest of quantified propositional logic is canonical

Γ, p, p̄
. . . Γ, Ai . . . ∧

k
Γ,

∧
k A1 . . . Ak

Γ, Aj ∨j

k
Γ,

∨
k A1 . . . Ak

�

�

�

�Iteration

• Now proof height should correspond to circuit height

• Can we make this formal by showing lower bounds?

circuit height is sequential time. . .

; what is an inherently sequential principle?

• When iterating a function 0, f(0), f(f(0)), f(f(f(0))) . . .

the evaluations of f have to be done one after another

. . . provided the domain/range of f is big enough!

�

�

�

�
Relativised Computation

Big domain?

• add a predicate on bit-strings αk(℘1, . . . , ℘k), ᾱk(℘1, . . . , ℘k)

again, only allow T, F, p, p̄ as arguments

• Extensionality of α, but otherwise uninterpreted.

• Now we can code f : [2n] → [2n] by its bit-graph

the i’th bit of f(a) is given by αn+log(n)(i, a)

�

�

�

�
Iteration Principle

Iterating a function 0, f(0), f(f(0)), f(f(f(0))) . . .

• How to express f ℓ(0) = b for ℓ ≫ n, say ℓ ∈ [2n]?

; Add another predicate to check the answers!

Use α2n(ℓ, b) to stand for f ℓ(0) = b

• Iteration principle Φn,ℓ

∃4n
−→p −→p ′−→q −→q ′[“f ℓ(0) = −→p ” ∨ ¬“f0(0) = 0 ”

∨(“−→q ′ = −→q + 1” ∧ “f
−→q (0) = −→p ” ∧

“f(−→p) = −→p ′ ” ∧ ¬“f
−→q ′

(0) = −→p ′ ”)]

�

�

�

�Boundedness

• Assume ⊢h Φn,ℓ. Want to show ℓ ≤ h.

; find a path through the proof with all sequents of the form

Φn,ℓ, ∆ with ∆ quantifier-free and false

• On this path reveal f only a little bit

α contains exponentially many bits of information!

; consider partial function f : [2n] ⇀ [2n]

• f is ℓ-sequential, if for some k ≤ ℓ

0, f(0), f2(0), . . . , fk(0)

are defined but fk(0) 6∈ dom(f).

�

�

�

�
Extending Partial Functions

• Keep f still s-sequential after having followed a path for s steps

• If f(a) is defined, this fixes αn+log(n)(i, a) in the obvious way.

• . . . have to fix “f b(0) = c ” as well

• Recall: . . . fk(0) 6∈ dom(f)

so values in the domain are “forbidden” for future extensions!

∴ can set “f b(0) = c ” to false, if c ∈ dom(f) and f b(0) undefined

in particular, c ∈ dom(f) forces “f b(0) = c ” to have a truth value

• To extend dom(f) by M , just pick a 6∈ M ∪ dom(f) and set

f ′(x) = a for the new x

the new f ′ is then s + 1 sequential and compatible to the

“f b(0) = c ” already fixed

�

�

�

�Conclusions

• Note: in the proof we only used that at each rule only a small

number of α values had to be fixed

So we can add a rule

. . . Γ, ∆i . . .

Γ
∆1, . . . ,∆k ⊢ ∅

for quantifier-free ∆i.

∴ Good target calculus for propositional translation

(true first-order rules don’t matter)

; strength measure for theories with clear computational meaning

