Proof Complexity for Circuit Classes

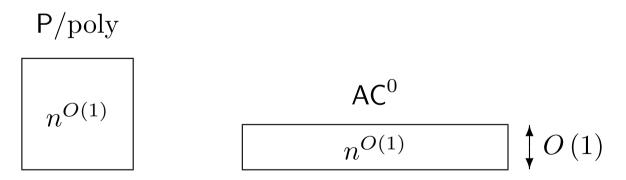
Klaus Aehlig

Comprehension in Propositional Proofs

• Extension Rule in Propositional Logic

$$p \leftrightarrow A$$

- several variables \rightsquigarrow several rules needed
- ! irrespectively of whether the new variables are interdependent
- But dependencies make a big difference in computation



... and proof theory was always more interested in heights.

Comprehension (cont'd)

• Dependence matters \rightsquigarrow have a rule that honours independence

$$\frac{\Gamma, \neg(p_1 \leftrightarrow \varphi_1), \dots, \neg(p_k \leftrightarrow \varphi_k)}{\Gamma}$$

 \overrightarrow{p} disjoint and new

- How does this influence height? What is this rule used for?
- \rightsquigarrow Comprehension rule, in a setting with

$$\frac{\Gamma, A(\overrightarrow{a})}{\Gamma, \forall_k \overrightarrow{p} A(\overrightarrow{p})} \qquad \frac{\Gamma, A(\overrightarrow{p})}{\Gamma, \exists_k \overrightarrow{p} A(\overrightarrow{p})}$$

Note: only atoms as witnesses!

The Comprehension Axiom

... is provable for those φ we allow comprehension for.

$$\frac{\overline{(p_i \leftrightarrow \varphi_i), \neg(p_i \leftrightarrow \varphi_i)} \dots}{\bigwedge_k (p_i \leftrightarrow \varphi_i), \neg(p_1 \leftrightarrow \varphi_1), \dots, \neg(p_k \leftrightarrow \varphi_k)} \bigwedge_k \left(\frac{\bigwedge_k (p_i \leftrightarrow \varphi_i), \neg(p_1 \leftrightarrow \varphi_1), \dots, \neg(p_k \leftrightarrow \varphi_k)}{\exists_k \overrightarrow{p} \bigwedge_k (p_i \leftrightarrow \varphi_i), \neg(p_1 \leftrightarrow \varphi_1), \dots, \neg(p_k \leftrightarrow \varphi_k)} \right)}_{\exists_k \overrightarrow{p} \bigwedge_k (p_i \leftrightarrow \varphi_i)} \text{ comprehension }$$

To relate the calculus to AC^0 , we require the $\overrightarrow{\varphi}$ quantifier free.

Quantified Propositional Logic

- Have seen quantifier-rules and comprehension already
- Rest of quantified propositional logic is canonical

$$\overline{\Gamma, p, \overline{p}} \qquad \frac{\dots \quad \Gamma, A_i \quad \dots}{\Gamma, \bigwedge_k A_1 \dots A_k} \bigwedge_k \qquad \frac{\Gamma, A_j}{\Gamma, \bigvee_k A_1 \dots A_k} \bigvee_k^j$$

Iteration

- Now proof height should correspond to circuit height
- Can we make this formal by showing lower bounds? *circuit height is sequential time...*
- \rightsquigarrow what is an inherently sequential principle?
 - When iterating a function 0, f(0), f(f(0)), f(f(f(0))) ... the evaluations of f have to be done one after another

 \dots provided the domain/range of f is big enough!

Relativised Computation

Big domain?

- add a predicate on bit-strings $\alpha_k(\wp_1, \ldots, \wp_k)$, $\bar{\alpha}_k(\wp_1, \ldots, \wp_k)$ again, only allow T, F, p, \bar{p} as arguments
- Extensionality of α , but otherwise uninterpreted.
- Now we can code $f: [2^n] \to [2^n]$ by its bit-graph the *i*'th bit of f(a) is given by $\alpha_{n+\log(n)}(i,a)$

Iteration Principle

Iterating a function 0, f(0), f(f(0)), f(f(f(0))) ...

- How to express $f^{\ell}(0) = b$ for $\ell \gg n$, say $\ell \in [2^n]$?
- \rightsquigarrow Add another predicate to check the answers! Use $\alpha_{2n}(\ell, b)$ to stand for $f^{\ell}(0) = b$
 - Iteration principle $\Phi_{n,\ell}$

$$\exists_{4n} \overrightarrow{p} \overrightarrow{p}' \overrightarrow{q} \overrightarrow{q}' ["f^{\ell}(0) = \overrightarrow{p} " \vee \neg "f^{0}(0) = 0"$$
$$\vee ("\overrightarrow{q}' = \overrightarrow{q} + 1" \wedge "f^{\overrightarrow{q}}(0) = \overrightarrow{p} " \wedge$$
$$"f(\overrightarrow{p}) = \overrightarrow{p}' " \wedge \neg "f^{\overrightarrow{q}'}(0) = \overrightarrow{p}'")]$$

[Boundedness]

- Assume $\vdash^h \Phi_{n,\ell}$. Want to show $\ell \leq h$.
- \rightsquigarrow find a path through the proof with all sequents of the form $\Phi_{n,\ell}, \Delta$ with Δ quantifier-free and false
 - On this path reveal f only a little bit α contains exponentially many bits of information!
- \rightsquigarrow consider *partial* function $f: [2^n] \rightharpoonup [2^n]$
 - f is ℓ -sequential, if for some $k \leq \ell$

 $0, f(0), f^2(0), \dots, f^k(0)$

are defined but $f^k(0) \not\in \mathsf{dom}(f)$.

Extending Partial Functions

- Keep f still s-sequential after having followed a path for s steps
- If f(a) is defined, this fixes $\alpha_{n+\log(n)}(i,a)$ in the obvious way.
- ... have to fix " $f^b(0) = c$ " as well
- Recall: ... f^k(0) ∉ dom(f)
 so values in the domain are "forbidden" for future extensions!
- ∴ can set " $f^b(0) = c$ " to false, if $c \in \mathsf{dom}(f)$ and $f^b(0)$ undefined in particular, $c \in \mathsf{dom}(f)$ forces " $f^b(0) = c$ " to have a truth value
- To extend dom(f) by M, just pick a ∉ M ∪ dom(f) and set f'(x) = a for the new x
 the new f' is then s + 1 sequential and compatible to the "f^b(0) = c " already fixed

(**Conclusions**)

 Note: in the proof we only used that at each rule only a small number of α values had to be fixed
 So we can add a rule

$$\frac{\dots \quad \Gamma, \Delta_i \quad \dots}{\Gamma} \qquad \Delta_1, \dots, \Delta_k \vdash \emptyset$$

for quantifier-free Δ_i .

- ∴ Good target calculus for propositional translation (true first-order rules don't matter)
- \rightsquigarrow strength measure for theories with clear computational meaning