Theories of Iterated Positive Induction

Bahareh Afshari, Michael Rathjen

University of Leeds

LC'08 July 2008

Bahareh Afshari, Michael Rathjen (Leeds) Theories of Iterated Positive Induction

LC'08 July 2008 1 / 24

3

- ∢ ≣ →

→ < Ξ →</p>

In 1963 Kreisel introduced the formal theories of inductive definitions in both single and iterated form.

In the 1970s these theories were studied in more details. This work culminated in $\left[1\right].$

3

- 4 同 6 4 日 6 4 日 6

Let $A(x, P^+)$ be an arithmetic formula with at most the free number variable x and a predicate P which occurs only positively in A(x, P). Such a formula gives rise to a function $\Gamma_A : P(\mathbf{N}) \to P(\mathbf{N})$ via

 $\Gamma_A(Y) = \{n \in \mathbf{N} | A(n, Y)\}.$

 Γ_A is monotone, i.e.

 $Y \subseteq Z \implies \Gamma_A(Y) \subseteq \Gamma_A(Z).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Let $A(x, P^+)$ be an arithmetic formula with at most the free number variable x and a predicate P which occurs only positively in A(x, P). Such a formula gives rise to a function $\Gamma_A : P(\mathbf{N}) \to P(\mathbf{N})$ via

 $\Gamma_A(Y) = \{n \in \mathbf{N} | A(n, Y)\}.$

 Γ_A is monotone, i.e.

$$Y \subseteq Z \implies \Gamma_A(Y) \subseteq \Gamma_A(Z).$$

We can iterate Γ_A along the ordinals by defining

$$\Gamma^{lpha}_{A} = \Gamma_{A}(igcup_{eta < lpha} \Gamma^{eta}_{A})$$

one creates the least fixed point I_A of Γ_A , i.e.

$$I_A = \bigcup_{\alpha} \Gamma_A^{\alpha}.$$

A first order theory that formalizes these first order arithmetic inductive definitions is ID_1 .

We can iterate Γ_A along the ordinals by defining

$$\Gamma^{lpha}_{A} = \Gamma_{A}(igcup_{eta < lpha} \Gamma^{eta}_{A})$$

one creates the least fixed point I_A of Γ_A , i.e.

$$I_{\mathcal{A}} = \bigcup_{\alpha} \Gamma_{\mathcal{A}}^{\alpha}.$$

A first order theory that formalizes these first order arithmetic inductive definitions is ID_1 .

The language of ID_1 extends the language of PRA. For each positive arithmetic formula $A(x, P^+)$, ID_1 has a unary predicate symbol I_A .

The axioms of ID_1 are those of PRA plus the induction scheme IND_N :

$$F(0) \land \forall x [F(x) \to F(x+1)] \to \forall x F(x)$$

for all formulas F(x) of ID_1 .

In addition we have axioms for the predicates I_A : $(I_A.1) \quad \forall u[A(u, I_A) \rightarrow I_A(u)]$ $(I_A.2) \quad \forall u[A(u, F) \rightarrow F(u)] \rightarrow \forall u[I_A(u) \rightarrow F(u)]$

Theorem

The proof theoretic ordinal of the system ID_1 is the Howard-Backman ordinal.

Bahareh Afshari, Michael Rathjen (Leeds) Theories of Iterated Positive Induction

LC'08 July 2008 5 / 24

(日) (周) (三) (三)

The language of ID_1 extends the language of PRA.

For each positive arithmetic formula $A(x, P^+)$, ID_1 has a unary predicate symbol I_A .

The axioms of ID_1 are those of *PRA* plus the induction scheme IND_N :

$$F(0) \land \forall x[F(x) \to F(x+1)] \to \forall xF(x)$$

for all formulas F(x) of ID_1 .

In addition we have axioms for the predicates I_A : $(I_A.1) \quad \forall u[A(u, I_A) \to I_A(u)]$ $(I_A.2) \quad \forall u[A(u, F) \to F(u)] \to \forall u[I_A(u) \to F(u)]$

Theorem

The proof theoretic ordinal of the system ID_1 is the Howard-Backman ordinal.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

The language of ID_1 extends the language of PRA.

For each positive arithmetic formula $A(x, P^+)$, ID_1 has a unary predicate symbol I_A .

The axioms of ID_1 are those of *PRA* plus the induction scheme IND_N :

$$F(0) \land \forall x[F(x) \to F(x+1)] \to \forall xF(x)$$

for all formulas F(x) of ID_1 .

In addition we have axioms for the predicates I_A : $(I_A.1) \quad \forall u[A(u, I_A) \rightarrow I_A(u)]$ $(I_A.2) \quad \forall u[A(u, F) \rightarrow F(u)] \rightarrow \forall u[I_A(u) \rightarrow F(u)]$

Theorem

The proof theoretic ordinal of the system ID_1 is the Howard-Backman ordinal.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

The language of ID_1 extends the language of PRA.

For each positive arithmetic formula $A(x, P^+)$, ID_1 has a unary predicate symbol I_A .

The axioms of ID_1 are those of *PRA* plus the induction scheme IND_N :

$$F(0) \land \forall x[F(x) \to F(x+1)] \to \forall xF(x)$$

for all formulas F(x) of ID_1 .

In addition we have axioms for the predicates I_A : $(I_A.1) \quad \forall u[A(u, I_A) \rightarrow I_A(u)]$ $(I_A.2) \quad \forall u[A(u, F) \rightarrow F(u)] \rightarrow \forall u[I_A(u) \rightarrow F(u)]$

Theorem

The proof theoretic ordinal of the system ID_1 is the Howard-Backman ordinal.

Bahareh Afshari, Michael Rathjen (Leeds) Theories of Iterated Positive Induction

LC'08 July 2008 5 / 24

$I\hat{D}_1$

You can show

$ID_1 \vdash \forall x (A(x, I_A) \leftrightarrow I_A(x)).$

 $\hat{ID_1}$ is obtained from ID_1 by omitting the axioms ($I_A.2$) and adding the axioms

 $\forall x[I_A(x) \to A(x, I_A)].$

Theorem

(Aczel)

$$|I\hat{D}_1| = \varphi \varepsilon_0 0.$$

Bahareh Afshari, Michael Rathjen (Leeds) Theories of Iterated Positive Induction

■ ▲ ■ ▲ ■ つへで LC'08 July 2008 6 / 24

$I\hat{D}_1$

You can show

$$ID_1 \vdash \forall x (A(x, I_A) \leftrightarrow I_A(x)).$$

 $\hat{D_1}$ is obtained from ID_1 by omitting the axioms $(I_A.2)$ and adding the axioms

$$\forall x[I_A(x) \to A(x, I_A)].$$

Theorem

(Aczel)

$$|I\hat{D}_1| = \varphi \varepsilon_0 0.$$

Bahareh Afshari, Michael Rathjen (Leeds) Theories of Iterated Positive Induction

$I\hat{D}_1$

You can show

$$ID_1 \vdash \forall x (A(x, I_A) \leftrightarrow I_A(x)).$$

 $\hat{D_1}$ is obtained from ID_1 by omitting the axioms $(I_A.2)$ and adding the axioms

$$\forall x[I_A(x) \to A(x, I_A)].$$

Theorem

(Aczel)

$$|I\hat{D}_1| = \varphi \varepsilon_0 0.$$

Bahareh Afshari, Michael Rathjen (Leeds) Theories of Iterated Positive Induction

$ID_1^{\#}$ is obtained from $I\hat{D}_1$ by restricting induction to formulas in which all fixed point predicates occur positively.

Theorem

(Jäger, Strahm 1996)

$$|ID_1^{\#}| = \varphi \omega 0.$$

Image: A mathematical states and a mathem

$ID_1^{\#}$ is obtained from $I\hat{D}_1$ by restricting induction to formulas in which all fixed point predicates occur positively.

Theorem

(Jäger, Strahm 1996)

$$|ID_1^{\#}| = \varphi \omega 0.$$

A D A D A D A

The theory ID_1^* is obtained from ID_1 by restricting the scheme $I_A.2$ and IND_N to formulas F(x) in which all predicates occur positively.

Friedman studied this system in 1969 as did Feferman in 1982, but only special cases were solved.

What was already known was that $\varphi \omega 0 \preceq |ID_1^*| \preceq \varphi \varepsilon 0$.

- 4 同 6 4 日 6 4 日 6

The theory ID_1^* is obtained from ID_1 by restricting the scheme $I_A.2$ and IND_N to formulas F(x) in which all predicates occur positively.

Friedman studied this system in 1969 as did Feferman in 1982, but only special cases were solved.

What was already known was that $\varphi \omega 0 \preceq |ID_1^*| \preceq \varphi \varepsilon 0$.

 $ID_1^* \Sigma_1^{1} - DC_0$

Definition

The Σ_1^1 -DC -Dependent Choices- scheme is

 $\forall x \forall X \exists YB(x, X, Y) \rightarrow \forall U \exists Z[(Z)_0 = U \land \forall xB(x, (Z)_x, (Z)_{x+1})]$

for Σ_1^1 formulas *B*.

The system $\Sigma_1^1 - DC_0$ is $ACA_0 + \Sigma_1^1 - DC$.

We can interpret ID_1^* in $\Sigma_1^1 - DC_0$; translate $I_A(t)$ using

 $\forall X [\forall u (A(u, X) \to u \in X) \to t \in X]$

and leave anything else unchanged. For B a formula of ID_1^* we will denote the translated formula by B^* .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

 $ID_1^* \Sigma_1^{1} - DC_0$

Definition

The Σ_1^1 -DC -Dependent Choices- scheme is

 $\forall x \forall X \exists YB(x, X, Y) \rightarrow \forall U \exists Z[(Z)_0 = U \land \forall xB(x, (Z)_x, (Z)_{x+1})]$

for Σ_1^1 formulas *B*.

The system $\Sigma_1^1 - DC_0$ is $ACA_0 + \Sigma_1^1 - DC$.

We can interpret ID_1^* in $\Sigma_1^1 - DC_0$; translate $I_A(t)$ using

$$\forall X [\forall u (A(u, X) \rightarrow u \in X) \rightarrow t \in X]$$

and leave anything else unchanged. For B a formula of ID_1^* we will denote the translated formula by B^* .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

More precisely

- $(\forall x \ A(x))^* \equiv \forall x \ A^*(x)$,
- $(\neg A)^* \equiv \neg A^*$,
- $(A \wedge B)^* \equiv A^* \wedge B^*$.,
- $(\forall X A(X))^* \equiv \forall X A^*(X).$

Definition

A formula is essentially Π_1^1 if it belongs to the smallest collection of formulas which contains all arithmetical formulas and is closed under $\land,\lor,\exists x, \forall x, and \forall X$.

Lemma

(*l_A(t)*)* is Π¹₁
 (*A*(*x*, *l_A*))* is essentially Π¹₁

3

< 回 ト < 三 ト < 三 ト

More precisely

- $(\forall x \ A(x))^* \equiv \forall x \ A^*(x)$,
- $(\neg A)^* \equiv \neg A^*$,

•
$$(A \wedge B)^* \equiv A^* \wedge B^*$$
.,

• $(\forall X \ A(X))^* \equiv \forall X \ A^*(X).$

Definition

A formula is essentially Π_1^1 if it belongs to the smallest collection of formulas which contains all arithmetical formulas and is closed under $\land,\lor,\exists x, \forall x, and \forall X$.

Lemma

(*I_A(t)*)* is Π¹₁
 (*A*(*x*, *I_A*))* is essentially Π¹₁

More precisely

- $(\forall x \ A(x))^* \equiv \forall x \ A^*(x)$,
- $(\neg A)^* \equiv \neg A^*$,

•
$$(A \wedge B)^* \equiv A^* \wedge B^*$$
.,

• $(\forall X \ A(X))^* \equiv \forall X \ A^*(X).$

Definition

A formula is essentially Π_1^1 if it belongs to the smallest collection of formulas which contains all arithmetical formulas and is closed under $\land,\lor,\exists x, \forall x, and \forall X$.

Lemma

Lemma

For any essentially Π_1^1 formula G we can find a Π_1^1 formula G' with the same free variables such that

 $ACA_0 \vdash G \to G'$

I heorem

(Simpson 1982) The following are equivalent over ACA_0 :

1 $\Sigma_1^1 - DC$

2 ω -model reflection for Π_2^1 formulas, i.e. if $C(X_1, \ldots, X_k)$ is Π_2^1 -formula with all set parameters exhibited, then

$$C(X_1, \dots, X_k) \rightarrow \exists \mathbf{A}[X_1, \dots, X_k \in \mathbf{A}$$

 $\mathbf{A} \models ACA_0$
 $\mathbf{A} \models C(X_1, \dots, X_k)$

3

Lemma

For any essentially Π_1^1 formula G we can find a Π_1^1 formula G' with the same free variables such that

 $\ \textbf{O} \ \ \textbf{ACA}_0 \vdash \textbf{G} \rightarrow \textbf{G}'$

Theorem

(Simpson 1982) The following are equivalent over ACA_0 :

1 $\Sigma_1^1 - DC$

• ω -model reflection for Π_2^1 formulas, i.e. if $C(X_1, \ldots, X_k)$ is Π_2^1 -formula with all set parameters exhibited, then

$$C(X_1, \dots, X_k)
ightarrow \exists \mathbf{A}[X_1, \dots, X_k \in \mathbf{A}$$

 $\mathbf{A} \models ACA_0$
 $\mathbf{A} \models C(X_1, \dots, X_k)$

- 32

イロト 不得下 イヨト イヨト

Lemma

 $\Sigma_1^1 - DC$ proves

$$\forall x[A(x,F) \rightarrow F(x)] \rightarrow \forall x[I_A^*(x) \rightarrow F(x)]$$

for all essentially Π_1^1 formulas F(x).

Proof.

For a contradiction assume

(1) $\forall x[A(x,F) \rightarrow F(x)]$ but

(2) $I_{A}^{*}(n_{0}) \wedge \neg F(n_{0})$ for some n_{0}

Let G(x) := A(x, F). This formula is essentially Π_1^1 . Let G'(x) and F'(x) be the corresponding formulas provided by the previous Lemma. Then we have

(3)
$$\forall x[G'(x) \rightarrow F'(x)]$$
 and
(4) $\neg F'(n_0)$.

Lemma

 $\Sigma_1^1 - DC$ proves

$$\forall x[A(x,F) \rightarrow F(x)] \rightarrow \forall x[I_A^*(x) \rightarrow F(x)]$$

for all essentially Π_1^1 formulas F(x).

Proof.

For a contradiction assume

(1) $\forall x[A(x,F) \rightarrow F(x)]$ but

(2) $I_A^*(n_0) \wedge \neg F(n_0)$ for some n_0

Let G(x) := A(x, F). This formula is essentially Π_1^1 . Let G'(x) and F'(x) be the corresponding formulas provided by the previous Lemma. Then we have

(3)
$$\forall x[G'(x) \rightarrow F'(x)]$$
 and
(4) $\neg F'(n_0)$.

Lemma

 $\Sigma_1^1 - DC$ proves

$$\forall x[A(x,F) \rightarrow F(x)] \rightarrow \forall x[I_A^*(x) \rightarrow F(x)]$$

for all essentially Π_1^1 formulas F(x).

Proof.

For a contradiction assume

(1)
$$\forall x[A(x,F) \rightarrow F(x)]$$
 but

(2) $I_{A}^{*}(n_{0}) \wedge \neg F(n_{0})$ for some n_{0}

Let G(x) := A(x, F). This formula is essentially Π_1^1 . Let G'(x) and F'(x) be the corresponding formulas provided by the previous Lemma. Then we have

(3)
$$\forall x[G'(x) \rightarrow F'(x)]$$
 and
(4) $\neg F'(n_0)$.

Using $\Pi_2^1 \omega$ -model reflection there exists an ω -model **A** of ACA_0 such that (5) **A** $\models \forall x[G'(x) \rightarrow F'(x)]$ and (6) **A** $\models \neg F'(n_0)$

Second part of the Lemma implies

(7) $\mathbf{A} \models \forall x [A(x, F') \rightarrow G'(x)]$ and 5 and 7 together yield

(8) $\mathbf{A} \models \forall x [A(x, F') \rightarrow F'(x)].$

Define $Z = \{u | \mathbf{A} \models F'(u)\}$. Z exists by arithmetical comprehension. As a result of 8 we have

(9) $\forall x[A(x,Z) \rightarrow x \in Z]$ and hence $I_A^* \subseteq Z$, thus by 2 $n_0 \in Z$, and therefore

(10) **A** \models *F*^{\prime}(*n*₀).

6 and 10 are contradictory.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Using $\Pi_2^1 \omega$ -model reflection there exists an ω -model **A** of ACA_0 such that (5) $\mathbf{A} \models \forall x [G'(x) \rightarrow F'(x)]$ and (6) $\mathbf{A} \models \neg F'(n_0)$

Second part of the Lemma implies

- (7) $\mathbf{A} \models \forall x [A(x, F') \rightarrow G'(x)]$ and 5 and 7 together yield
- (8) $\mathbf{A} \models \forall x [A(x, F') \rightarrow F'(x)].$

Define $Z = \{u | \mathbf{A} \models F'(u)\}$. Z exists by arithmetical comprehension. As a result of 8 we have

- (9) $\forall x[A(x,Z) \rightarrow x \in Z]$ and hence $I_A^* \subseteq Z$, thus by 2 $n_0 \in Z$, and therefore
- (10) **A** \models *F*^{\prime}(*n*₀).
- 6 and 10 are contradictory.

3

Using $\Pi_2^1 \omega$ -model reflection there exists an ω -model **A** of ACA_0 such that (5) $\mathbf{A} \models \forall x [G'(x) \rightarrow F'(x)]$ and (6) $\mathbf{A} \models \neg F'(n_0)$

Second part of the Lemma implies

- (7) $\mathbf{A} \models \forall x [A(x, F') \rightarrow G'(x)]$ and 5 and 7 together yield
- (8) $\mathbf{A} \models \forall x [A(x, F') \rightarrow F'(x)].$

Define $Z = \{u | \mathbf{A} \models F'(u)\}$. Z exists by arithmetical comprehension. As a result of 8 we have

(9) $\forall x[A(x,Z) \rightarrow x \in Z]$ and hence $I_A^* \subseteq Z$, thus by 2 $n_0 \in Z$, and therefore

6 and 10 are contradictory.

(10) **A** \models $F'(n_0)$.

Using $\Pi_2^1 \omega$ -model reflection there exists an ω -model **A** of ACA_0 such that (5) **A** $\models \forall x[G'(x) \rightarrow F'(x)]$ and (6) **A** $\models \neg F'(n_0)$

Second part of the Lemma implies

- (7) $\mathbf{A} \models \forall x [A(x, F') \rightarrow G'(x)]$ and 5 and 7 together yield
- (8) $\mathbf{A} \models \forall x [A(x, F') \rightarrow F'(x)].$

Define $Z = \{u | \mathbf{A} \models F'(u)\}$. Z exists by arithmetical comprehension. As a result of 8 we have

- (9) $\forall x[A(x,Z) \rightarrow x \in Z]$ and hence $I_A^* \subseteq Z$, thus by 2 $n_0 \in Z$, and therefore
- (10) **A** \models *F*^{\prime}(*n*₀).
- 6 and 10 are contradictory.

The Strength of ID_1^*

Theorem

$$ID_1^* - B \Rightarrow \Sigma_1^1 - DC_0 - B^*$$

Proof.

- $(I_A.1)^*$ is provable in ACA_0 .
- $(I_A.2)^*$ is provable in $\Sigma_1^1 DC_0$ using ω -model reflection for Π_2^1 -formulas.
- Σ_1^1 - DC_0 proves induction on **N** for ess- Π_1^1 formulas.

Corollary

(Michael Rathjen 2007)

$$|ID_1^*| = \varphi \omega 0.$$

Bahareh Afshari, Michael Rathjen (Leeds)

Theories of Iterated Positive Induction

LC'08 July 2008 14 / 24

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The Strength of ID_1^*

Theorem

$$ID_1^* \vdash B \Rightarrow \Sigma_1^1 - DC_0 \vdash B^*$$

Proof.

- $(I_A.1)^*$ is provable in ACA_0 .
- $(I_A.2)^*$ is provable in $\Sigma_1^1 DC_0$ using ω -model reflection for Π_2^1 -formulas.
- Σ_1^1 - DC_0 proves induction on **N** for ess- Π_1^1 formulas.

Corollary

(Michael Rathjen 2007)

$$|ID_1^*| = \varphi \omega 0.$$

Bahareh Afshari, Michael Rathjen (Leeds)

Theories of Iterated Positive Induction

LC'08 July 2008 14 / 24

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The Strength of ID_1^*

Theorem

$$ID_1^* \vdash B \Rightarrow \Sigma_1^1 \text{-} DC_0 \vdash B^*$$

Proof.

- $(I_A.1)^*$ is provable in ACA_0 .
- $(I_A.2)^*$ is provable in $\Sigma_1^1 DC_0$ using ω -model reflection for Π_2^1 -formulas.
- Σ_1^1 - DC_0 proves induction on **N** for ess- Π_1^1 formulas.

Corollary

(Michael Rathjen 2007)

$$|ID_1^*| = \varphi \omega 0.$$

Bahareh Afshari, Michael Rathjen (Leeds)

Theories of Iterated Positive Induction

LC'08 July 2008 14 / 24

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The Strength of ID_1^*

Theorem

$$ID_1^* \vdash B \Rightarrow \Sigma_1^1 \text{-} DC_0 \vdash B^*$$

Proof.

- $(I_A.1)^*$ is provable in ACA_0 .
- $(I_A.2)^*$ is provable in $\Sigma_1^1 DC_0$ using ω -model reflection for Π_2^1 -formulas.
- Σ_1^1 - DC_0 proves induction on **N** for ess- Π_1^1 formulas.

Corollary

(Michael Rathjen 2007) $|ID_1^*| = \varphi \omega 0.$ Bahareh Afshari, Michael Rathjen (Leeds) Theories of Iterated Positive Induction LC'08 July 2008 14 / 24

The Strength of ID_1^*

Theorem

$$ID_1^* \vdash B \Rightarrow \Sigma_1^1 \text{-} DC_0 \vdash B^*$$

Proof.

- $(I_A.1)^*$ is provable in ACA_0 .
- $(I_A.2)^*$ is provable in $\Sigma_1^1 DC_0$ using ω -model reflection for Π_2^1 -formulas.
- Σ_1^1 - DC_0 proves induction on **N** for ess- Π_1^1 formulas.

Corollary

(Michael Rathjen 2007)

$$|ID_1^*| = \varphi \omega 0.$$

Bahareh Afshari, Michael Rathjen (Leeds)

Theories of Iterated Positive Induction

LC'08 July 2008 14 / 24

(日) (四) (王) (王) (王)

ID_n^*

Theories of Iterated Positive Induction

Definition

The language of the subsystem ID_2^* extends the language of ID_1^* . In addition it has predicate symbols I_A^2 for formulas $A(x, P^+)$ in the language of $ID_1^* \cup \{P\}$.

The axioms of ID_2^* consist of the axioms from ID_1^* plus

$$\begin{array}{ll} (l_A^2.1) & \forall u[A(u,l_A^2) \to l_A^2(u)] \\ (l_A^2.2) & \forall u[A(u,F) \to F(u)] \to \forall u[l_A^2(u) \to F(u)] \end{array}$$

if all predicates of the form I_B^2 appear positively in F.

(人間) トイヨト イヨト ニヨ

Let $X \subseteq P(\mathbf{N})$, $X \neq \emptyset$, and $\mathcal{A} = \langle \mathbf{N}, X, +, ., 0, 1, <, \in \rangle$.

 \mathcal{A} can be viewed as a structure for the language of second order arithmetic, where numerical quantifiers range over **N** and set quantifiers range over X. If $X = \{(W)_n | n \in \mathbf{N}\}$ for some set $W \subseteq \mathbf{N}$, \mathcal{A} is called a countable coded ω -model.

Definition

Let E_1 , E_2 ,... be set constants. Let C_n $(N \ge 1)$ express that $\langle \mathbf{N}, \{(E_n)_j | j \in \mathbf{N}\} \rangle$ is a model of $\Sigma_1^1 - DC_0$ and $E_1 \in \ldots \in E_{n-1} \in E_n$.

We can interpret ID_2^* in $\Sigma_1^1 - DC_0 + C_1$. The way to do this is to use the same interpretation from ID_1^* embedding but in two steps:

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Let $X \subseteq P(\mathbf{N})$, $X \neq \emptyset$, and $\mathcal{A} = \langle \mathbf{N}, X, +, ., 0, 1, <, \in \rangle$.

 \mathcal{A} can be viewed as a structure for the language of second order arithmetic, where numerical quantifiers range over **N** and set quantifiers range over X. If $X = \{(W)_n | n \in \mathbf{N}\}$ for some set $W \subseteq \mathbf{N}$, \mathcal{A} is called a countable coded ω -model.

Definition

Let E_1 , E_2 ,... be set constants. Let C_n $(N \ge 1)$ express that $\langle \mathbf{N}, \{(E_n)_j | j \in \mathbf{N}\} \rangle$ is a model of $\Sigma_1^1 - DC_0$ and $E_1 \in \ldots \in E_{n-1} \in E_n$.

We can interpret ID_2^* in $\Sigma_1^1 - DC_0 + C_1$. The way to do this is to use the same interpretation from ID_1^* embedding but in two steps:

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト … ヨ …

Let
$$X \subseteq P(\mathbf{N})$$
, $X \neq \emptyset$, and $\mathcal{A} = \langle \mathbf{N}, X, +, ., 0, 1, <, \in \rangle$.

 \mathcal{A} can be viewed as a structure for the language of second order arithmetic, where numerical quantifiers range over **N** and set quantifiers range over X. If $X = \{(W)_n | n \in \mathbf{N}\}$ for some set $W \subseteq \mathbf{N}$, \mathcal{A} is called a countable coded ω -model.

Definition

Let E_1 , E_2 ,... be set constants. Let C_n $(N \ge 1)$ express that $\langle \mathbf{N}, \{(E_n)_j | j \in \mathbf{N}\} \rangle$ is a model of $\Sigma_1^1 - DC_0$ and $E_1 \in \ldots \in E_{n-1} \in E_n$.

We can interpret ID_2^* in $\Sigma_1^1 - DC_0 + C_1$. The way to do this is to use the same interpretation from ID_1^* embedding but in two steps:

イロト 不得 トイヨト イヨト ニヨー

$$ID_n^* \qquad \Sigma_1^1 - DC_0 + \bigwedge_1^n C_i$$

(1) We translate the level one predicates and formulas of ID_1^* using the translation

$$(I^1_A(t))^{*E_1} \equiv \forall X \in E_1[\forall u(A(u,X) \to u \in X) \to t \in X].$$

(2) We then take the translation upward to predicates of level two by

$$(I_B^2(t))^{*E_1} \equiv \forall X [\forall u (B^{*E_1}(u, X) \rightarrow u \in X) \rightarrow t \in X].$$

Theorem

$$ID_2^* \vdash \psi \implies \Sigma_1^1 - DC_0 \vdash C_1 \to \psi^{*E_1}$$

where ψ^{*E_1} is the translation of ψ using the ω -model E_1 .

LC'08 July 2008 17 / 24

- 4 同 6 4 日 6 4 日 6

$$ID_n^* \qquad \Sigma_1^1 - DC_0 + \bigwedge_1^n C_i$$

(1) We translate the level one predicates and formulas of ID_1^* using the translation

$$(I^1_A(t))^{*E_1} \equiv \forall X \in E_1[\forall u(A(u,X) \to u \in X) \to t \in X].$$

(2) We then take the translation upward to predicates of level two by

$$(I_B^2(t))^{*E_1} \equiv \forall X [\forall u (B^{*E_1}(u, X) \rightarrow u \in X) \rightarrow t \in X].$$

Theorem

$$ID_2^* \vdash \psi \implies \Sigma_1^1 - DC_0 \vdash C_1 \to \psi^{*E_1}$$

where ψ^{*E_1} is the translation of ψ using the ω -model E_1 .

イロト 不得下 イヨト イヨト

$$ID_n^* \qquad \Sigma_1^1 - DC_0 + \bigwedge_1^{\sim} C_i$$

Theorem

$$ID_{n+1}^{*} \vdash \psi \Rightarrow \Sigma_{1}^{1} - DC_{0} \vdash \bigwedge_{1}^{n} C_{i} \to \psi^{*\overrightarrow{E}_{n}}$$

where $\psi^* \vec{E}_n$ is the translation of ψ using the ω -models E_1, \ldots, E_n .

For a limit ordinal $\alpha \leq \Gamma_0$, let $(\Pi_1^0 - CA)_{\prec \alpha}$ be the theory ACA₀ plus $\forall X \exists YH^X(\overline{\beta}, Y)$ for all $\beta \prec \alpha$ and $TI(\prec \alpha)$ where $H^X(\alpha, Y)$ is defined as follows:

$$\begin{aligned} H^{X}(\alpha, Y) \Leftrightarrow (Y)_{0} &= X \land \\ \forall \beta + 1 \preceq \alpha(Y)_{\beta + 1} = jump((Y)_{\beta}) \land \\ \forall \lambda \preceq \alpha(Y)_{\lambda} &= \{ \langle \xi, a \rangle | \xi \prec \lambda, a \in (Y)_{\xi} \} \end{aligned}$$

Theorem

Let α be an ε -number. If Γ is a set of ess- Σ_1^1 sentences, then

 $\Sigma_1^1 - DC_0 + TI(\prec \alpha) + C_1 + C_2 + \ldots + C_n \vdash \Gamma$ $\Rightarrow (\Pi_1^0 - CA)_{\prec \alpha} + C_1 + C_2 + \ldots + C_n \vdash \Gamma.$

3

(日) (同) (日) (日) (日)

For a limit ordinal $\alpha \leq \Gamma_0$, let $(\Pi_1^0 - CA)_{\prec \alpha}$ be the theory ACA₀ plus $\forall X \exists YH^X(\overline{\beta}, Y)$ for all $\beta \prec \alpha$ and $TI(\prec \alpha)$ where $H^X(\alpha, Y)$ is defined as follows:

$$\begin{aligned} H^{X}(\alpha, Y) \Leftrightarrow (Y)_{0} &= X \wedge \\ \forall \beta + 1 \preceq \alpha(Y)_{\beta + 1} = jump((Y)_{\beta}) \wedge \\ \forall \lambda \preceq \alpha(Y)_{\lambda} &= \{ \langle \xi, a \rangle | \xi \prec \lambda, a \in (Y)_{\xi} \} \end{aligned}$$

Theorem

Let α be an ε -number. If Γ is a set of ess- Σ_1^1 sentences, then

$$\Sigma_1^1 - DC_0 + TI(\prec \alpha) + C_1 + C_2 + \ldots + C_n \vdash \Gamma$$

$$\Rightarrow (\Pi_1^0 - CA)_{\prec \alpha} + C_1 + C_2 + \ldots + C_n \vdash \Gamma.$$

Lemma

If A is an ess- Π_1^1 formula then

$$RA^* \Big|_{0}^{\prec \omega.(\sigma+1).3} \neg A^{\sigma}, A^1.$$

Theorem

Let λ be a limit and Γ a set of ess- Π_1^1 formulas. Then

$$(\Pi_1^0 - CA)_{\prec \omega^{\lambda}} + C_1 + \ldots + C_n \vdash \Gamma \Rightarrow RA^* + C_1 + \ldots + C_n |_{\prec \omega^{\lambda}}^{\omega^{\lambda+1}} \Gamma^1$$

where Γ^1 arises from Γ by replacing every universal quantifier $\forall X$ by $\forall X^0$.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

 ID_n^* RA^*

Lemma

If A is an ess- Π_1^1 formula then

$$RA^*|_{\overline{0}}^{\prec\omega.(\sigma+1).3} \neg A^{\sigma}, A^1.$$

Theorem

Let λ be a limit and Γ a set of ess- Π_1^1 formulas. Then

$$(\Pi_1^0 - CA)_{\prec \omega^{\lambda}} + C_1 + \ldots + C_n \vdash \Gamma \Rightarrow RA^* + C_1 + \ldots + C_n |_{\prec \omega^{\lambda}}^{\omega^{\lambda+1}} \Gamma^1$$

where Γ^1 arises from Γ by replacing every universal quantifier $\forall X$ by $\forall X^0$.

Theorem

Let $RA^* + C_1 + \ldots + C_n |_q^{\beta} \Gamma$ mean that there is a derivation of length $\leq \beta$ of Γ in RA^* where are cuts have cut formulas arithmetic in E_1, \ldots, E_n . Then

RA³

ID.

$$RA^* + C_1 + \ldots + C_n \Big|_{\omega^{\gamma}}^{\beta} \Gamma \Rightarrow RA^* + C_1 + \ldots + C_n \Big|_{q}^{\varphi\gamma\beta} \Gamma.$$

I heorem

Let α be an ε -number and F a formula of second order arithmetic relativized to E_n , then

 $RA^* + C_1 + \ldots + C_n |_q^{\prec \alpha} F^{E_n} \Rightarrow \Sigma_1^1 - DC_0 + C_1 + \ldots + C_{n-1} + TI(\prec \alpha) | - F^{\#}.$

where # is a translation which works in the following way

 $-(E_i \in E_n)^{\#} \equiv 0 = 0 \text{ where by } E_i \in E_n \text{ we mean } \exists x (E_n)_x = E_i$ $-E_n^{\#} = \{x | x = x\}.$

Bahareh Afshari, Michael Rathjen (Leeds)

Theories of Iterated Positive Induction

LC'08 July 2008 21 / 24

$ID_n^* RA^*$

Theorem

Let $RA^* + C_1 + \ldots + C_n |_q^{\beta} \Gamma$ mean that there is a derivation of length $\leq \beta$ of Γ in RA^* where are cuts have cut formulas arithmetic in E_1, \ldots, E_n . Then

$$RA^* + C_1 + \ldots + C_n \Big|_{\omega^{\gamma}}^{\beta} \Gamma \Rightarrow RA^* + C_1 + \ldots + C_n \Big|_{q}^{\varphi\gamma\beta} \Gamma.$$

Theorem

Let α be an ε -number and F a formula of second order arithmetic relativized to E_n , then

$$RA^* + C_1 + \ldots + C_n |_q^{\prec \alpha} F^{E_n} \Rightarrow \Sigma_1^1 - DC_0 + C_1 + \ldots + C_{n-1} + TI(\prec \alpha) \vdash F^{\#}.$$

where # is a translation which works in the following way

$$-(E_i \in E_n)^{\#} \equiv 0 = 0 \text{ where by } E_i \in E_n \text{ we mean } \exists x (E_n)_x = E_i$$
$$-E_n^{\#} = \{x | x = x\}.$$

Corollary

Let A be an arithmetic formula, then

$$\Sigma_1^1 - DC + C_1 \vdash A \Rightarrow (\Pi_1^0 - CA)_{\prec \varphi \omega 0} \vdash A.$$

Proof.

As in [3], $\Sigma_1^1 - DC + C_1 \vdash A$ implies $(\Pi_1^0 - CA)_{\prec \omega^{\omega}} + C_1 \vdash A$. Then we would have $RA^* + C_1 |_{\omega^n}^{\omega^{m+1}} A$ for some *n*, and thus $RA^* + C_1 |_{q}^{\varphi n \omega^{\omega+1}} A$. From this we can derive $\Sigma_1^1 - DC_0 + TI(\prec \varphi n \omega^{\omega+1}) \vdash A$. Finally we get $(\Pi_1^0 - CA)_{\prec \varphi \omega 0} \vdash A$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Corollary

Let A be an arithmetic formula, then

$$\Sigma^1_1 - DC + C_1 \vdash A \Rightarrow (\Pi^0_1 - CA)_{\prec \varphi \omega 0} \vdash A.$$

Proof.

As in [3], $\Sigma_1^1 - DC + C_1 \vdash A$ implies $(\Pi_1^0 - CA)_{\prec \omega^{\omega}} + C_1 \vdash A$. Then we would have $RA^* + C_1 |_{\omega^n}^{\omega^{\omega+1}} A$ for some *n*, and thus $RA^* + C_1 |_{q}^{\varphi n \omega^{\omega+1}} A$. From this we can derive $\Sigma_1^1 - DC_0 + TI(\prec \varphi n \omega^{\omega+1}) \vdash A$. Finally we get $(\Pi_1^0 - CA)_{\prec \varphi \omega 0} \vdash A$.

ID_n^{*} Results

Corollary

 ID_2^* , $\Sigma_1^1 - DC_0 + C_1$, and $(\Pi_1^0 - CA)_{\prec \varphi \omega 0}$ prove the same arithmetic statements as $PA + TI(\prec \varphi(\varphi \omega 0)0)$.

Theorem

$$|ID_n^*| = \underbrace{\varphi \dots \varphi(\varphi}_n \omega 0) 0 \dots 0.$$

ID^{*}_n Results

Corollary

 ID_2^* , $\Sigma_1^1 - DC_0 + C_1$, and $(\Pi_1^0 - CA)_{\prec \varphi \omega 0}$ prove the same arithmetic statements as $PA + TI(\prec \varphi(\varphi \omega 0)0)$.

Theorem

$$|ID_n^*| = \underbrace{\varphi \dots \varphi(\varphi}_n \omega 0) 0 \dots 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Wilfried Buchholz et al.

Iterated inductive definitions and subsystems of Analysis. Springer-Verlag, Berlin, Heidelberg, 1981.

Solomon Feferman.

Iterated inductive fixed-point theories. Patras Logic Symposion, pages 171–196, 1982.

📔 Michael Rathjen.

Auwahl und komprehension in teilsystemen der analysis. Master's thesis, M.Sc., University of Münster, 1985.

Kurt Schütte. Proof Theory.

Springer-Verlag, Berlin, Heidelberg, 1977.

🔋 S. Simpson.

Subsystems of Second Order Arithmetic.

Perspectives in Mathematical Logic. Springer, 1998.