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Introduction History

In 1963 Kreisel introduced the formal theories of inductive definitions in
both single and iterated form.

In the 1970s these theories were studied in more details. This work
culminated in [1].
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Introduction Underlying semantics

Definition

Let A(x ,P+) be an arithmetic formula with at most the free number
variable x and a predicate P which occurs only positively in A(x ,P).
Such a formula gives rise to a function ΓA : P(N)→ P(N) via

ΓA(Y ) = {n ∈ N|A(n,Y )}.

ΓA is monotone, i.e.

Y ⊆ Z =⇒ ΓA(Y ) ⊆ ΓA(Z ).
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Introduction Underlying semantics

We can iterate ΓA along the ordinals by defining

ΓαA = ΓA(
⋃
β<α

ΓβA)

one creates the least fixed point IA of ΓA, i.e.

IA =
⋃
α

ΓαA.

A first order theory that formalizes these first order arithmetic inductive
definitions is ID1.
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Introduction ID1

The language of ID1 extends the language of PRA.
For each positive arithmetic formula A(x ,P+), ID1 has a unary predicate
symbol IA.

The axioms of ID1 are those of PRA plus the induction scheme INDN:

F (0) ∧ ∀x [F (x)→ F (x + 1)]→ ∀xF (x)

for all formulas F (x) of ID1.

In addition we have axioms for the predicates IA:
(IA.1) ∀u[A(u, IA)→ IA(u)]
(IA.2) ∀u[A(u,F )→ F (u)]→ ∀u[IA(u)→ F (u)]

Theorem

The proof theoretic ordinal of the system ID1 is the Howard-Backman
ordinal.
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Introduction Subtheories of ID1

ˆID1

You can show
ID1 ∀x(A(x , IA)↔ IA(x)) .

ˆID1 is obtained from ID1 by omitting the axioms (IA.2) and adding the
axioms

∀x [IA(x)→ A(x , IA)].

Theorem

(Aczel)
| ˆID1| = ϕε00.
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Introduction Subtheories of ID1

ID#
1

ID#
1 is obtained from ˆID1 by restricting induction to formulas in which all

fixed point predicates occur positively.

Theorem

(Jäger, Strahm 1996)

|ID#
1 | = ϕω0.
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Introduction Subtheories of ID1

ID∗1

The theory ID∗1 is obtained from ID1 by restricting the scheme IA.2 and
INDN to formulas F (x) in which all predicates occur positively.

Friedman studied this system in 1969 as did Feferman in 1982, but only
special cases were solved.

What was already known was that ϕω0 � |ID∗1 | � ϕε0.
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ID∗1 Σ1
1-DC0

Definition

The Σ1
1-DC -Dependent Choices- scheme is

∀x∀X∃YB(x ,X ,Y )→ ∀U∃Z [(Z )0 = U ∧ ∀xB(x , (Z )x , (Z )x+1)]

for Σ1
1 formulas B.

The system Σ1
1 − DC0 is ACA0 + Σ1

1 − DC .

We can interpret ID∗1 in Σ1
1 − DC0; translate IA(t) using

∀X [∀u(A(u,X )→ u ∈ X )→ t ∈ X ]

and leave anything else unchanged. For B a formula of ID∗1 we will denote
the translated formula by B∗.
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ID∗1 Σ1
1-DC0

More precisely

(∀x A(x))∗ ≡ ∀x A∗(x),

(¬A)∗ ≡ ¬A∗,

(A ∧ B)∗ ≡ A∗ ∧ B∗.,

(∀X A(X ))∗ ≡ ∀X A∗(X ).

Definition

A formula is essentially Π1
1 if it belongs to the smallest collection of

formulas which contains all arithmetical formulas and is closed under
∧,∨,∃x, ∀x, and ∀X .

Lemma

1 (IA(t))∗ is Π1
1

2 (A(x , IA))∗ is essentially Π1
1
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ID∗1 Σ1
1-DC0

Lemma

For any essentially Π1
1 formula G we can find a Π1

1 formula G ′ with the
same free variables such that

1 Σ1
1 − AC0 G ′ → G

2 ACA0 G → G ′

Theorem

(Simpson 1982) The following are equivalent over ACA0:

1 Σ1
1 − DC

2 ω-model reflection for Π1
2 formulas, i.e. if C (X1, . . . ,Xk) is

Π1
2-formula with all set parameters exhibited, then

C (X1, . . . ,Xk)→ ∃A[X1, . . . ,Xk ∈ A

A |= ACA0

A |= C (X1, . . . ,Xk)].
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ID∗1 Σ1
1-DC0

Lemma

Σ1
1 − DC proves

∀x [A(x ,F )→ F (x)]→ ∀x [I ∗A(x)→ F (x)]

for all essentially Π1
1 formulas F (x).

Proof.

For a contradiction assume

(1) ∀x [A(x ,F )→ F (x)] but

(2) I ∗A(n0) ∧ ¬F (n0) for some n0

Let G (x) := A(x ,F ). This formula is essentially Π1
1. Let G ′(x) and

F ′(x) be the corresponding formulas provided by the previous Lemma.
Then we have

(3) ∀x [G ′(x)→ F ′(x)] and

(4) ¬F ′(n0).
ut
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ID∗1 Σ1
1-DC0

Proof.

Using Π1
2 ω-model reflection there exists an ω-model A of ACA0 such that

(5) A |= ∀x [G ′(x)→ F ′(x)] and

(6) A |= ¬F ′(n0)

Second part of the Lemma implies

(7) A |= ∀x [A(x ,F ′)→ G ′(x)]
and 5 and 7 together yield

(8) A |= ∀x [A(x ,F ′)→ F ′(x)].

Define Z = {u|A |= F ′(u)}. Z exists by arithmetical comprehension.
As a result of 8 we have

(9) ∀x [A(x ,Z )→ x ∈ Z ] and hence I ∗A ⊆ Z , thus by 2 n0 ∈ Z , and
therefore

(10) A |= F ′(n0).

6 and 10 are contradictory. ut
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ID∗1 Σ1
1-DC0

The Strength of ID∗1

Theorem

ID∗1 B ⇒ Σ1
1-DC0 B∗

Proof.

- (IA.1)∗ is provable in ACA0.

- (IA.2)∗ is provable in Σ1
1 − DC0 using ω-model reflection for

Π1
2-formulas.

- Σ1
1-DC0 proves induction on N for ess-Π1

1 formulas.
ut

Corollary

(Michael Rathjen 2007)
|ID∗1 | = ϕω0.
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ID∗n

Theories of Iterated Positive Induction

Definition

The language of the subsystem ID∗2 extends the language of ID∗1 . In
addition it has predicate symbols I 2

A for formulas A(x ,P+) in the language
of ID∗1 ∪ {P}.

The axioms of ID∗2 consist of the axioms from ID∗1 plus

(I 2
A.1) ∀u[A(u, I 2

A)→ I 2
A(u)]

(I 2
A.2) ∀u[A(u,F )→ F (u)]→ ∀u[I 2

A(u)→ F (u)]

if all predicates of the form I 2
B appear positively in F .
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ID∗n

Definition

Let X ⊆ P(N), X 6= ∅, and A = 〈N,X ,+, ., 0, 1, <,∈〉.
A can be viewed as a structure for the language of second order arithmetic,
where numerical quantifiers range over N and set quantifiers range over X .
If X = {(W )n|n ∈ N} for some set W ⊆ N, A is called a countable coded
ω-model.

Definition

Let E1, E2,. . . be set constants. Let Cn (N ≥1) express that
〈N, {(En)j |j ∈ N}〉 is a model of Σ1

1 − DC0 and E1 ∈ . . . ∈ En−1 ∈ En.

We can interpret ID∗2 in Σ1
1 − DC0 + C1. The way to do this is to use the

same interpretation from ID∗1 embedding but in two steps:
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ID∗n Σ1
1 − DC0 +

n∧
1

Ci

(1) We translate the level one predicates and formulas of ID∗1 using the
translation

(I 1
A(t))∗E1 ≡ ∀X ∈ E1[∀u(A(u,X )→ u ∈ X )→ t ∈ X ].

(2) We then take the translation upward to predicates of level two by

(I 2
B(t))∗E1 ≡ ∀X [∀u(B∗E1(u,X )→ u ∈ X )→ t ∈ X ].

Theorem

ID∗2 ψ ⇒ Σ1
1 − DC0 C1 → ψ∗E1

where ψ∗E1 is the translation of ψ using the ω-model E1.
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ID∗n Σ1
1 − DC0 +

n∧
1

Ci

Theorem

ID∗n+1 ψ ⇒ Σ1
1 − DC0

n∧
1

Ci → ψ∗
→
E n

where ψ∗
→
E n is the translation of ψ using the ω-models E1, . . . ,En.
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ID∗n (Π0
1 − CA)≺α

Definition

For a limit ordinal α � Γ0, let (Π0
1 − CA)≺α be the theory ACA0 plus

∀X∃YHX (β,Y ) for all β ≺ α and TI (≺ α) where HX (α,Y ) is defined as
follows:

HX (α,Y )⇔(Y )0 = X∧
∀β + 1 � α(Y )β+1 = jump((Y )β)∧
∀λ � α(Y )λ = {〈ξ, a〉|ξ ≺ λ, a ∈ (Y )ξ}.

Theorem

Let α be an ε-number. If Γ is a set of ess-Σ1
1 sentences, then

Σ1
1 − DC0 + TI (≺ α)+C1 + C2 + . . .+ Cn Γ

⇒(Π0
1 − CA)≺α + C1 + C2 + . . .+ Cn Γ .
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ID∗n RA∗

Lemma

If A is an ess-Π1
1 formula then

RA∗
≺ω.(σ+1).3

0
¬Aσ,A1 .

Theorem

Let λ be a limit and Γ a set of ess-Π1
1 formulas. Then

(Π0
1 − CA)≺ωλ + C1 + . . .+ Cn Γ ⇒ RA∗ + C1 + . . .+ Cn

ωλ+1

≺ωλ
Γ1

where Γ1 arises from Γ by replacing every universal quantifier ∀X by ∀X 0.
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ID∗n RA∗

Theorem

Let RA∗ + C1 + . . .+ Cn
β

q Γ mean that there is a derivation of length � β
of Γ in RA∗ where are cuts have cut formulas arithmetic in E1, . . . ,En.
Then

RA∗ + C1 + . . .+ Cn
β

ωγ
Γ ⇒ RA∗ + C1 + . . .+ Cn

ϕγβ

q Γ .

Theorem

Let α be an ε-number and F a formula of second order arithmetic
relativized to En, then

RA∗+C1 +. . .+Cn
≺α
q F En ⇒ Σ1

1−DC0 +C1 +. . .+Cn−1 +TI (≺ α) F # .

where # is a translation which works in the following way

− (Ei ∈ En)# ≡ 0 = 0 where by Ei ∈ En we mean ∃x (En)x = Ei

− E #
n = {x |x = x}.
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ID∗n Results

Corollary

Let A be an arithmetic formula, then

Σ1
1 − DC + C1 A ⇒ (Π0

1 − CA)≺ϕω0 A .

Proof.

As in [3], Σ1
1 − DC + C1 A implies (Π0

1 − CA)≺ωω + C1 A . Then we

would have RA∗ + C1
ωω+1

ωn A for some n, and thus RA∗ + C1
ϕnωω+1

q A .

From this we can derive Σ1
1 − DC0 + TI (≺ ϕnωω+1) A . Finally we get

(Π0
1 − CA)≺ϕω0 A . ut
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ID∗n Results

Corollary

ID∗2 , Σ1
1 − DC0 + C1, and (Π0

1 − CA)≺ϕω0 prove the same arithmetic
statements as PA + TI (≺ ϕ(ϕω0)0).

Theorem

|ID∗n | = ϕ . . . ϕ(ϕ︸ ︷︷ ︸
n

ω0)0 . . . 0.
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