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This is a report about the extending the ideas and methods of Proof
Theory to a new, promising area. It seems that this is a kind of

development in which Proof Theory might be interested.

Similar stories about what the Logic of Proofs brings to foundations,

constructive semantics, combinatory logic and lambda-calculi, the-
ory of verification, cryptography, etc., lie mostly outside the scope

of this talk.



Mainstream Epistemology:
tripartite approach to knowledge (usually attributed to Plato)

Knowledge ∼ Justified True Belief.

A core topic in Epistemology, especially in the wake of papers by
Russell, Gettier, and others: questioned, criticized, revised; now is

generally regarded as a necessary condition for knowledge.



Logic of Knowledge: the model-theoretic approach (Kripke, Hin-
tikka, . . .) has dominated modal logic and formal epistemology since

the 1960s.

!F ∼ F holds at all possible worlds (situations).
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the 1960s.

!F ∼ F holds at all possible worlds (situations).

Easy, visual, useful in many cases, but misses the mark considerably:

What if F holds at all possible worlds, e.g., a mathematical truth,
say P "= NP , but the agent is simply not aware of the fact due to

lack of evidence, proof, justification, etc.?

Speaking informally: modal logic offers a limited formalization

Knowledge ∼ True Belief.

There were no justifications in the modal logic of knowledge, hence

a principal gap between mainstream and formal epistemology.



Obvious defect: Logical Omniscience

A basic principle of modal logic (of knowledge, belief, etc.):

!(F →G)→(!F →!G).

At each world, the agent is supposed to “know” all logical conse-
quences of his/her assumptions.
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Obvious defect: Logical Omniscience

A basic principle of modal logic (of knowledge, belief, etc.):

!(F →G)→(!F →!G).

At each world, the agent is supposed to “know” all logical conse-
quences of his/her assumptions.

“Each agent who knows the rules of Chess should know whether

there is a winning strategy for White.”

“Suppose one knows a product of two (very large) primes. In what

sense does he/she know each of the primes, given that factorization
may take billions of years of computation?”
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Awareness models (Fagin & Halpern)

!F ∼ F holds at all possible worlds and the agent is aware of F .

Without closure conditions, the awareness function exhibits weird
behavior, e.g., the agent could be aware of F ∧F and not aware

of F . Straightforward closure conditions bring Logical Omniscience
back to the model.



Adding a proof-theoretical component:

Proofs ⇒ Justifications

Proofs of assumptions ⇒ Constants

Proofs of hypotheses ⇒ Variables

Proofs without hypotheses ⇒ Ground justifications

Proofs with hypotheses ⇒ Justifications with variables

Rules ⇒ Operations on justifications

Cut elimination ⇒ Recovery of explicit knowledge
from modal derivations



What does this approach bring to Epistemology?

• mathematical theory of justification where justification logic sys-
tems enjoy normal closure properties and clean epistemic semantics,
soundness and completeness theorems

• richer language for dealing with Knowledge, Belief, Evidence

• old/new evidence-based semantics for modal epistemic logic

• natural handling of Logical Omniscience

• new mathematics and appealing connections to other fields

• etc.



The basics of Justification Logic

Brouwer-Heyting-Kolmogorov (BHK) semantics:

• a proof of A∧B consists of a proof of A and a proof of B,

• a proof of A∨B is given by presenting either a proof of A or a
proof of B,

• a proof of A→B is a construction transforming proofs of A into

proofs of B



Gödel’s modal logic of provability

Gödel (1933) introduced the modal logic S4 as the system for ax-
iomatizing classical provability:

Axioms and rules of classical propositional logic

!(F→G)→(!F→!G) Normality
!F→F Reflexivity

!F→!!F Transitivity

Necessitation Rule:
' F

' !F
.



Based on Brouwer’s understanding of logical truth as provability,
Gödel defined a translation tr(F) of the propositional formula F in

the intuitionistic language into the language of classical modal logic:

tr(F) = prefix every subformula of F with the provability modality !.

Informally speaking, when the usual procedure of determining the
classical truth of a formula is applied to tr(F), it will test the prov-

ability (not the truth) of each of F ’s subformulas in agreement with
Brouwer’s ideas.



From Gödel’s results and the McKinsey-Tarski work on topological
semantics for modal logic, it follows that the translation tr(F) pro-

vides a proper embedding of the intuitionistic logic IPC into S4, i.e.,
an embedding of IPC into classical logic extended by the provability

operator.

Theorem [Gödel, McKinsey & Tarski, 1933-1948]:

IPC proves F ⇔ S4 proves tr(F).



Still, Gödel’s original goal of defining IPC in terms of classical prov-
ability was not reached because the connection of S4 to the usual

mathematical notion of provability was not established.

Gödel considered the (straightforward) interpretation of !F to be

F is provable in Peano Arithmetic PA

and noticed that this semantics is inconsistent with S4. Indeed,
S4 ' !(!F →F), and when ! = Provable = formal provability predi-

cate in Peano Arithmetic PA, and F as ⊥, this formula becomes false:

Provable (Consis PA) .



The situation following Gödel’s paper of 1933 can be described by
the scheme below in which ‘↪→’ denotes a ‘provability’ embedding:

IPC ↪→ S4 ↪→ ? ↪→ PA .



Alternative Gödel’s format for provability

In his Vienna lecture of 1938, Gödel mentioned the possibility of

building an explicit version of S4 with the proposition

t is a proof of F

interpreted via the proof predicate in PA:

Proof (t, F).

This lecture remained unpublished until 1995. By that time, the

full Logic of Proofs LP had already been discovered by the author.



Principal observation:
For each specific derivation p, PA ' Proof (p, F)→F .

Indeed,
• If Proof (p, F) holds, then F is evidently provable in PA, and so is

the formula Proof (p, F)→F .

• If ¬Proof (p, F) holds, then it is provable in PA (since Proof (x, y)

is decidable) and Proof (p, F )→F is again provable.



Logic of Proofs LP: the language

Proof polynomials are terms built from proof variables x, y, z, . . .

and proof constants a, b, c, . . . by means of two binary operations:
application ‘·’ and choice ‘+’, and one unary proof checker ‘!’.

Using t to denote any proof polynomial and S any sentence letter,
the formulas of the Logic of Proofs are defined by the grammar

A = S | A→A | A ∧ A | A ∨ A | ¬A | t:A .



Logic of Proofs LP

The standard axioms and rules of classical propositional logic
t:(F →G) → (s:F →(t·s):G) Application

t:F → !t:(t:F) Proof Checker
s:F →(s+t):F , t:F →(s+t):F Choice

t:F →F Reflexivity
' c:A, where A is an axiom

and c is a proof constant Constant Specification Rule

LPCS is LP with the Constant Specification Rule replaced by a set
of axioms

CS ⊆ {c:A | A is an axiom and c is a proof constant}



One of the basic properties of LP is its capability of internalizing its
own derivations:

if A1, . . . , An ' F ,

then for some proof polynomial t(x1, . . . , xn),

x1:A1, . . . , xn:An ' t(x1, . . . , xn):F .



One of the basic properties of LP is its capability of internalizing its
own derivations:

if A1, . . . , An ' F ,

then for some proof polynomial t(x1, . . . , xn),

x1:A1, . . . , xn:An ' t(x1, . . . , xn):F .

Note that the Curry-Howard isomorphism covers only a simple in-

stance of the internalization property where all of A1, . . . , An, B are
purely propositional formulas containing no proof terms.



Internalization, the general form:

if Γ, "y:∆ ' F ,

then for some proof polynomial t("x, "y),

"x:Γ, "y:∆ ' t("x, "y):F .



Realization of S4 in the Logic of Proofs LP

S4 is the forgetful projection of LP, i.e.,

1. The forgetful projection of LP is S4-compliant.

2. For each theorem F of S4, one can recover a witness (proof

polynomial) for each occurrence of ! in F in such a way that the
resulting formula Fr is derivable in LP.

Realization gives a semantics of proofs for S4.

S4 ' F ⇔ ∃r LP ' Fr



Part (1) of the Realization theorem is straightforward. Part (2) is
not so easy. Let us try the ‘naive’ approach: induction on a given

derivation in S4. Realization of S4 axioms is trivial. Necessitation
is covered by Internalization. Modus Ponens?

A→B A

B
By I.H., the premises are realizable. Therefore, in LP,

Ar→Br Ar

Br
.

What is wrong with this “proof?”



Part (1) of the Realization theorem is straightforward. Part (2) is
not so easy. Let us try the ‘naive’ approach: induction on a given

derivation in S4. Realization of S4 axioms is trivial. Necessitation
is covered by Internalization. Modus Ponens?

A→B A

B
By I.H., the premises are realizable. Therefore, in LP,

Ar→Br Ar

Br
.

What is wrong with this “proof?”

These r’s depend on a derivation, hence the Ar’s may be differ-
ent. How to reconcile/unify them?



Cut-elimination is the answer!

The Realization Algorithm (all versions known so far) work with

cut-free proofs in S4.



We start with a cut-free S4-proof.

. . .

!A ⇒ !A∨B

!A ⇒ !(!A∨B)

. . .

B ⇒ !A∨B

!B ⇒ !A∨B

!B ⇒ !(!A∨B)

!A∨!B ⇒ !(!A∨B)



Then we fill in negative !’s with distinct variables.

. . .

x:A ⇒ !A∨B

x:A ⇒ !(!A∨B)

. . .

B ⇒ !A∨B

y:B ⇒ !A∨B

y:B ⇒ !(!A∨B)

x:A∨y:B ⇒ !(!A∨B)



Some positive !’s follow up easily.

. . .

x:A ⇒ x:A∨B

x:A ⇒ !(x:A∨B)

. . .

B ⇒ x:A∨B

y:B ⇒ x:A∨B

y:B ⇒ !(x:A∨B)

x:A∨y:B ⇒ !(x:A∨B)



All remaining !’s are special cases of Internalization.

. . .

x:A ⇒ x:A∨B

x:A ⇒ !(x:A∨B)

. . .

B ⇒ x:A∨B

y:B ⇒ x:A∨B

y:B ⇒ !(x:A∨B)

x:A∨y:B ⇒ !(x:A∨B)



We have to reconcile two different proof terms, hence u1+u2.

. . .

x:A ⇒ x:A∨B

x:A ⇒ [u1+u2]:(x:A∨B)

. . .

B ⇒ x:A∨B

y:B ⇒ x:A∨B

y:B ⇒ [u1+u2]:(x:A∨B)

x:A∨y:B ⇒ [u1+u2]:(x:A∨B)



It remains for us to specify u1 and u2, each at its node.

. . .

x:A ⇒ x:A∨B

x:A ⇒ [u1+u2]:(x:A∨B)

. . .

B ⇒ x:A∨B

y:B ⇒ x:A∨B

y:B ⇒ [u1+u2]:(x:A∨B)

x:A∨y:B ⇒ [u1+u2]:(x:A∨B)



First we find u1 := s(x, y) such that ' x:A→s(x, y):(x:A ∨ B).

. . .

x:A ⇒ x:A∨B

x:A ⇒ [u1+u2]:(x:A∨B)

. . .

B ⇒ x:A∨B

y:B ⇒ x:A∨B

y:B ⇒ [u1+u2]:(x:A∨B)

x:A∨y:B ⇒ [u1+u2]:(x:A∨B)



Finding such s(x, y):

1. x:A→(x:A∨B) - propositional axiom

2. a:[x:A→(x:A∨B)] - specifying constant a

3. x:A→ !x:x:A - proof checking axiom

4. !x:x:A→ [a·!x]:(x:A∨B) - from 2, by application
5. x:A→ [a·!x]:(x:A∨B) - from 3,4.

Hence s(x, y) = a·!x where a:[x:A→(x:A∨B)].



Substitute u1 for a·!x:

. . .

x:A ⇒ x:A∨B

x:A ⇒ [a·!x+u2]:(x:A∨B)

. . .

B ⇒ x:A∨B

y:B ⇒ x:A∨B

y:B ⇒ [a·!x+u2]:(x:A∨B)

x:A∨y:B ⇒ [a·!x+u2]:(x:A∨B)



Now we look for u2 := t(x, y) such that ' y:B→ t(x, y):(x:A ∨ B).

. . .

x:A ⇒ x:A∨B

x:A ⇒ [a·!x+u2]:(x:A∨B)

. . .

B ⇒ x:A∨B

y:B ⇒ x:A∨B

y:B ⇒ [a·!x+u2]:(x:A∨B)

x:A∨y:B ⇒ [a·!x+u2]:(x:A∨B)



Finding such t(x, y):

1. B→(x:A ∨ B) - propositional axiom

2. b:[B→(x:A ∨ B)] - specifying constant b

3. y:B→ [b·y]:(x:A ∨ B)] - by application, from 2

So, t(x, y) is b·y where b:[B→(x:A ∨ B)].



The final step: a derivation in LP:

. . .

x:A ⇒ x:A∨B

x:A ⇒ [a·!x+b·y]:(x:A∨B)

. . .

B ⇒ x:A∨B

y:B ⇒ x:A∨B

y:B ⇒ [a·!x+b·y]:(x:A∨B)

x:A∨y:B ⇒ [a·!x+b·y]:(x:A∨B)

where a:[x:A→(x:A∨B)] and b:[B→(x:A ∨ B)].



The original algorithm was exponential.

A polynomial realization algorithm was suggested by Brezhnev &

Kuznets. It produces proof polynomials of at most quadratic size in
the length of the given cut-free derivation in S4.



Provability semantics of LP

Interpretations respect Boolean connectives and

(p:F )∗ = Proof (p∗, F ∗).

Completeness theorem (A):

LP derives all valid logical principles in its language.



Some foundational consequences

Completing Gödel’s effort concerning the logic of provability and

BHK semantics:

IPC ↪→ S4 ↪→ LP ↪→ PA .



Foundational consequences: existential semantics of modality.

Models Proofs

Γ |= F ⇔ Γ ' F

∀ models . . . ∃ a proof . . .

∀-semantics ∃-semantics

Kripke semantics ???

∀ possible worlds . . . ???

There has been a model-theoretic Kripke (∀) semantics of !, but
there were no proof-theoretic (∃) readings of ! (cf. Gödel’s prov-
ability interpretation).



Foundational consequences: existential semantics of modality.

Models Proofs

Γ |= F ⇔ Γ ' F

∀ models . . . ∃ a proof . . .

∀-semantics ∃-semantics

Kripke semantics Realizability

∀ possible worlds . . . ∃ realization . . .

∀-semantics fits to modeling computational processes.
∃-semantics is natural for epistemic/provability situations, which is
what Epistemology seems to need...



From Proofs to Justifications

Explicit analogues (LP-style) of all major epistemic modal logics:
K, K4, KD4, T, S5, etc.

Basic Justification Logic J = the explicit counterpart of K:

The standard axioms and rules of classical propositional logic
t:(F →G) → (s:F →(t·s):G) Application
s:F →(s+t):F , t:F →(s+t):F Choice
Constant Specification (ranging from ∅ to the total CS).

Justifications are not necessarily factive, positive introspection/proof
checker is not assumed.



Epistemic models for J (Fitting-style)

Model is (W, R, E, "), where

• (W, R) is a K-frame;

• E is an evidence function: for each term t and formula F , E(t, F)
is a set of u ∈ W where t is a possible evidence for F . An evidence

function has natural closure properties that agree with operations
of J, i.e.

E(s, F) ⊆ E(s + t, F) ∩ E(t + s, F)
E(s, F →G) ∩ E(t, F) ⊆ E(s·t, G);

• u" t:F iff u ∈ E(t, F) and v"F whenever uRv.



Justification Logic J is capable of formalizing paradigmatic epistemic
examples involving justifications: Gettier, Russell’s prime minister

example, Kripke’s red barn example, etc.



Gettier example

Smith has applied for a job, but has a justified belief that ‘Jones will

get the job.’ He also has a justified belief that ‘Jones has 10 coins
in his pocket.’ Smith therefore (justifiably) concludes ... that ‘the

man who will get the job has 10 coins in his pocket.’

In fact, Jones does not get the job. Instead, Smith does. However,

as it happens, Smith also has 10 coins in his pocket. So his belief
that ‘the man who will get the job has 10 coins in his pocket’ was

justified and true. But it does not appear to be knowledge.



Formalizing the data

JJ = Jones gets the job
SJ = Smith gets the job

JC = Jones has 10 coins in his pocket
SC = Smith has 10 coins in his pocket

x = whatever evidence Smith had about JJ

y = whatever evidence Smith had about JC



Explicitly made assumptions:

1. x:JJ (x is a justification of ‘Jones gets the job’)
2. y:JC (y is a justification of ‘Jones has 10 coins in his pocket’)

3. ¬JJ (Jones does not get the job)
4. SJ (Smith gets the job)

5. SC (Smith has 10 coins in his pocket)

Justification Logic methods show that these assumptions are not

sufficient to derive Gettiers conclusion Smith is justified in believing
that ‘the man who will get the job has 10 coins in his pocket.’



In this setting, the sentence ‘the man who will get the job has 10
coins in his pocket’ can be represented by the formula

(JJ →JC) ∧ (SJ →SC).

No justified knowledge assertion for this formula, i.e.,

t:[(JJ →JC) ∧ (SJ →SC)],

is derivable from the assumptions x:JJ, y:JC, ¬JJ, SJ, SC.



Countermodel for Gettier’s claim

W = {1,2}, R = {(1,2)}, E is total, i.e., E(t, F) = W for each t, F .

‘belief world’ 2 • JJ, JC, SJ, ¬SC
↑

‘real world’ 1 • ¬JJ, JC, SJ, SC

All assumptions hold at 1,2.

Furthermore, 2 ""(JJ →JC) ∧ (SJ →SC), hence

1 "" t:[(JJ →JC) ∧ (SJ →SC)]

for each t.



Augmented set of assumptions

It is now easy to spot a missing assumption:

Jones and Smith cannot both have this job

(which is, of course, a default here). When it is added explicitly, the
formal reasoning goes smoothly.

6. z:(JJ →¬SJ) (z is a justification of ‘Jones and Smith cannot both
have the job’)



Derivation of Gettier’s claim

7.(z ·x):(¬SJ), from 1,6, by Application

8. p:[¬SJ →(SJ→SC)], Internalization of a tautology
9. (z ·x):(¬SJ)→(p·(z ·x)):(SJ →SC), by Application

10. (p·(z ·x)):(SJ →SC), from 7,9, by Modus Ponens
11. c:[JC→(JJ →JC)], by Internalization

12 y:JC→(c·y):(JJ →JC), by Application
13. (c·y):(JJ →JC), from 2,12, by Modus Ponens

14. t:[(JJ →JC) ∧ (SJ →SC)], for an appropriate t, from 10 and 13



Metatheory of the Gettier example

Missing assumption analysis has just been performed.

We can also eliminate redundancies: no coins/pockets are needed...



Red Barn Example (Goldman – Kripke)

There are a number of fake barns or facades of barns in a cer-
tain locality. In the midst of these fake barns is one real barn, which
is painted red and no fake barns are painted red. Jones is driving
along the highway, looks around and happens to see the real barn,
and so forms the belief I see a barn. Though Jones has gotten lucky,
he could just as easily have been deceived and not known it. So this
is not knowledge.

An alternate example: Jones looks around and forms the belief I
see a red barn. This is knowledge, since Jones couldn’t have been
wrong, as fake barns cannot be painted red. This is a troubling
account however, because it seems that the first statement, I see a
barn, can be inferred from I see a red barn.



Formalization of RBE in epistemic modal logic

B - ‘the object which the agent sees is a barn’
R - ‘the object which the agent sees is red’
! is the belief modality of Jones.
1. !B

2. !(B∧R)
3. !(B∧R)→(B∧R)

Case (2) is knowledge, whereas (1) is not knowledge, by the prob-
lem’s description. On the other hand, (1) logically follows from (2)
in any epistemic modal logic:
(B∧R)→B, logical axiom
![(B∧R)→B], by Necessitation
!(B∧R)→!B, by the Normality axiom.
This is a paradox, which is faithfully reproduced in modal logic.



Justification Logic provides a clean resolution of this paradox

Let us use the language of explicit justifications here.

Assumptions:
1. u:B.

2. v:(B∧R)
3. v:(B∧R)→(B∧R).

Reasoning:
4. (B∧R)→B, logical axiom

5. a:[(B∧R)→B], Constant Specification
6. v:(B∧R)→(a·v):B, by Application.



Justification Logic provides a clean resolution of this paradox

Let us use the language of explicit justifications here.
Assumptions:
1. u:B.
2. v:(B∧R)
3. v:(B∧R)→(B∧R).
Reasoning:
4. (B∧R)→B, logical axiom
5. a:[(B∧R)→B], Constant Specification
6. v:(B∧R)→(a·v):B, by Application.
‘Paradox’ disappears! Instead of deriving (1) from (2), we have
obtained the correct conclusion that (a ·v):B, i.e., Jones knows B

for reason a·v, NOT u. Hence, after observing a red facade, Jones
indeed knows B but this knowledge has nothing to do with (1),
which remains a case of belief rather then knowledge.



Justification Logic provides a clean resolution of this paradox

Let us use the language of explicit justifications here.

Assumptions:
1. u:B.

2. v:(B∧R)
3. v:(B∧R)→(B∧R).

Model where (2) and (3) hold but not (1).

W = {a}, R = ∅, E at a is the minimal admissible evidence function
containing total constant specification and (v, B∧R). B and R are

both true at a.
‘real world’ a • B, R

Apparently, E(u, B) does not hold and a" (2), (3), but not (1).



Towards ‘truth tracking’

This example shows that we can perform some ‘truth tracking’ using

explicit justifications and other machinery of Justification Logic.



Triple action of Proof Theory in Epistemology

1. Proofs as justifications.

2. Cut-elimination for realization theorems.

3. Truth tracking.


