Polar decomposition of o-minimal groups

From not compact to compact

Annalisa Conversano conversa@mail.dm.unipi.it

Department of Mathematics and Computer Science University of Siena

Definition. A linearly ordered structure $\mathcal{M} = \langle M, <, ..., \rangle$ is o-minimal if every definable subset of M is a finite union of points and open intervals.

Definition. A linearly ordered structure $\mathcal{M} = \langle M, <, ..., \rangle$ is o-minimal if every definable subset of M is a finite union of points and open intervals.

Examples. $\mathbb{R} = \langle \mathbb{R}, <, +, \cdot \rangle$

Definition. A linearly ordered structure $\mathcal{M} = \langle M, <, ..., \rangle$ is o-minimal if every definable subset of M is a finite union of points and open intervals.

Examples. $\mathbb{R} = \langle \mathbb{R}, <, +, \cdot \rangle$

Real closed fields.

Definition. A linearly ordered structure $\mathcal{M} = \langle M, <, ..., \rangle$ is **o-minimal** if every definable subset of M is a finite union of points and open intervals.

Examples. $\mathbb{R} = \langle \mathbb{R}, <, +, \cdot \rangle$

Real closed fields.

 $\mathbb{R}_{exp} = \langle \mathbb{R}, <, +, \cdot, exp \rangle$ [Wilkie].

We fix a sufficiently saturated o-minimal expansion ${\cal M}$ of a real closed field.

Definable groups - Compact Lie groups

Theorem. [Berarducci - Otero - Peterzil - Pillay] Every definable group G has a smallest type-definable subgroup of bounded index G^{00} and the quotient G/G^{00} with the logic topology is a compact real Lie group.

Theorem. [Hrushovski - Peterzil - Pillay] If G is definably compact then $\dim G = \dim(G/G^{00})$.

Theorem. [Hrushovski - Pillay] If *G* is definably compact then *G* is dominated by $(G/G^{00}, h)$ under the canonical $\pi: G \to G/G^{00}$, where *h* is the Haar measure on G/G^{00} .

Question. What is the meaning of G/G^{00} when G is not definably compact? Is G/G^{00} a 'good' compact Lie group in order to study topological properties of G?

G^{00}

 G^{00} := the smallest type-definable subgroup of bounded index in G.

• Compact case: G^{00} is the subgroup of the 'intrinsecal' infinitesimals of G.

Example. $G = [0, 1[^M, G^{00} = \bigcap_{n \in \mathbb{N}} [0, 1/n[^M, G/G^{00}]) \cong [0, 1[^{\mathbb{R}} \cong S^1].$

- Non compact case: It can happens $G = G^{00}$:
 - G torsion free. Ex: G = (M, +).
 - G almost definably simple. Ex: G = SL(2, M).

Definable polar decomposition

Definition. A group G defined over a real closed field M has a definable polar decomposition if

- $\exists K < G$ maximal definably compact definable subgroup,
- $\blacksquare \ E \subset G, \ E \approx M^l,$

s.t. the map

$$K \times E \to G$$
$$(k, e) \mapsto ke$$

is a definable homeomorphism.

 $G \stackrel{?}{\approx} K \times M^l$

A negative example. [Strzebonski].

 $G = \mathbb{R} \times [0, 1[$

$$(a_1, t_1) * (a_2, t_2) = \begin{cases} (a_1 + a_2, & t_1 \oplus t_2) & \text{if } t_1 + t_2 < 1, \\ (a_1 + a_2 + 1, t_1 \oplus t_2) & \text{otherwise.} \end{cases}$$

 $G \not\approx \mathbb{R}^2$ BUT it does not have any infinite definably compact definable subgroups.

$G \approx K \times M^l$

Proposition. [C.] For every definable group *G* there exists a normal torsion free definable subgroup *H* of *G* which contains every normal torsion free definable subgroup of *G*. We will say that it is the maximum normal torsion free definable subgroup of *G*.

Theorem. [C.] Let $H \lhd G$ be the maximum normal torsion free definable subgroup of G. Then $\overline{G} := G/H$ does have a definable polar decomposition:

$$\bar{G} \approx \bar{K} \times M^l.$$

Corollary. Every definable group G is definably homotopically equivalent to a definably compact definable group \bar{K} .

The functor: $G \mapsto G/G^{00}$

[Berarducci]

$$\Phi: A \xrightarrow{f} B \mapsto A/A^{00} \xrightarrow{\Phi(f)} B/B^{00}$$
$$aA^{00} \mapsto f(a)B^{00}$$

The image of a short exact sequence

$$1 \longrightarrow N \xrightarrow{i} G \xrightarrow{p} Q \longrightarrow 1$$

is a short exact sequence

$$1 \longrightarrow N/N^{00} \xrightarrow{\Phi(i)} G/G^{00} \xrightarrow{\Phi(p)} Q/Q^{00} \longrightarrow 1$$

if and only if $N^{00} = N \cap G^{00}$.

Exactness property

Definition. G has the exactness property if

$$N \lhd G$$
 definable $\Rightarrow N^{00} = G^{00} \cap N.$

G has the strong exactness property if

$$S < G$$
 definable $\Rightarrow S^{00} = G^{00} \cap S.$

Negative examples.

•
$$G = SL(2, M) = G^{00}$$
, $S = SO(2, M)$, $N = \pm I$.

● $PSL(2,M) = SL(2,M)/\{\pm I\}$ does have the exactness
property because is definably simple but not the strong
because of S = PSO(2,M).

$N \lhd G \stackrel{?}{\Rightarrow} N^{00} = G^{00} \cap N$

Proposition. [C.] Let $H \lhd G$ definable groups s.t.

- H has the (strong) exactness property,
- G/H has the (strong) exactness property,
- $H^{00} = H \cap G^{00}$.

Then G does have the (strong) exactness property.

Positive examples.

- strong: *G* with radical *R* s.t. G/R is definably compact.
- maybe not strong: G semisimple centerless.

Definable groups - Compact Lie groups

Let G be a definable group and \overline{K} definably compact, definably homotopically equivalent to G:

$$\begin{array}{ccc} G & \sim & \bar{K} \\ p_G & & & & \\ p_G & & & \\ & & & \\ G/G^{00} & \stackrel{?}{\longleftrightarrow} \bar{K}/\bar{K}^{00} \end{array}$$

In general G/G^{00} is Lie isomorphic to a quotient of \bar{K}/\bar{K}^{00} . $G/G^{00} \cong \bar{K}/\bar{K}^{00} \iff G$ has the strong exactness property.

Two interesting subclasses

Let be R the radical of a definable group G. We have:

- R definably compact $\implies G \approx K \times M^l$, K < G
- G/R definably compact \implies G has the strong exactness property

 $\iff G/G^{00}$ is a 'good' compact real Lie group for G:

$$\Phi \colon G \mapsto G/G^{00}$$
 is exact and

$$G/G^{00} \cong \bar{K}/\bar{K}^{00}$$