Phase Transitions for Weakly Increasing Sequences

Michiel De Smet, Andreas Weiermann

Department of Pure Mathematics and Computer Algebra Ghent University

> Logic Colloquium 2008 ASL European Summer Meeting Bern, Switzerland, July 3-8

> > <ロト <四ト <注入 <注下 <注下 <

OUTLINE

1 PHASE TRANSITIONS

- What are phase transitions?
- Why study phase transitions?

ヘロト ヘアト ヘビト ヘビ

OUTLINE

1 PHASE TRANSITIONS

- What are phase transitions?
- Why study phase transitions?
- 2 WEAKLY INCREASING SEQUENCES
 - The principle
 - Lower bound
 - Upper bound

< 🗇 🕨

(1)

OUTLINE

1 PHASE TRANSITIONS

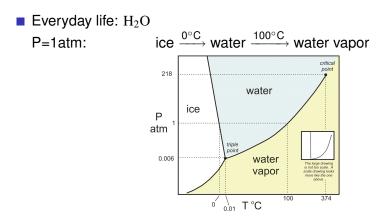
- What are phase transitions?
- Why study phase transitions?
- 2 WEAKLY INCREASING SEQUENCES
 - The principle
 - Lower bound
 - Upper bound
- **3** Related Results and Expectations
 - Sharper threshold region
 - Erdös-Szekeres and Dilworth

< 🗇 🕨

(4) (3) (4) (4) (4)

What are phase transitions? Why study phase transitions?

SMALL CHANGES, BIG CONSEQUENCES



 Mathematics (statistical physics, evolutionary graph theory, percolation theory, computational complexity, ...)

What are phase transitions? Why study phase transitions?

PHASE TRANSITIONS IN LOGIC AND COMBINATORICS

Parameter f

classifiability simplicity provability threshold region for f threshold region for f threshold region for f

complexity unprovability

< ロト < 同ト < ヨト < ヨト

chaos

What are phase transitions? Why study phase transitions?

PHASE TRANSITIONS IN LOGIC AND COMBINATORICS

Parameter f

classifiability simplicity provability threshold region for f threshold region for f threshold region for f

chaos complexity unprovability

< ロト < 同ト < ヨト < ヨト

In this talk Parameter function fStatement ISP_f Theory I Σ_1

$$\mathrm{I}\Sigma_1 \vdash \mathrm{ISP}_f \xrightarrow{\text{threshold region for } f} \mathrm{I}\Sigma_1 \nvDash \mathrm{ISP}_f$$

What are phase transitions? Why study phase transitions?

PHASE TRANSITION FOR ISP_f

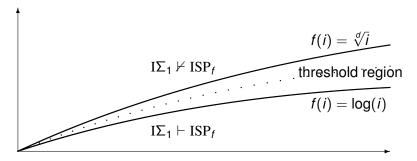


Figure: Phase transitions for ISP_f

イロト 不得 とくほ とくほう

What are phase transitions? Why study phase transitions?

PHASE TRANSITION FOR ISP_f

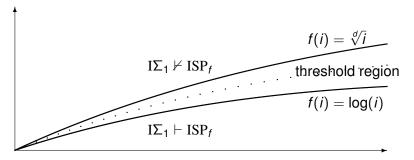


Figure: Phase transitions for ISP_f

Goal: Determine the threshold region as exact as possible.

イロト 不得 とくほ とくほう

What are phase transitions? Why study phase transitions?

MOTIVATIONS FOR STUDYING PHASE TRANSITIONS

Phase transitions in general

Phenomenon of universality (~ in physics): Same phase transitions for many theorems from different areas in mathematics.

What are phase transitions? Why study phase transitions?

MOTIVATIONS FOR STUDYING PHASE TRANSITIONS

Phase transitions in general

- Phenomenon of universality (~ in physics): Same phase transitions for many theorems from different areas in mathematics.
- Understand how to extract complexity from universality, from chaos, from prime numbers, ...

MOTIVATIONS FOR STUDYING PHASE TRANSITIONS

Phase transition for the principle of weakly increasing sequences

Because of its connection to the open problem on Ramsey's theorem for pairs and two colors (RT_2^2) in reverse mathematics.

MOTIVATIONS FOR STUDYING PHASE TRANSITIONS

Phase transition for the principle of weakly increasing sequences

Because of its connection to the open problem on Ramsey's theorem for pairs and two colors (RT_2^2) in reverse mathematics.

■ Simpson [1998]: *n* ≥ 3 and *k* ≥ 2:

$$\operatorname{RCA}_0 \vdash \operatorname{RT}_k^n \leftrightarrow \operatorname{ACA}_0$$

Seetapun and Slaman [1995]:

$$RCA_0 \vdash RT_2^2 \nrightarrow ACA_0$$

Strength RT₂²?

FINITE SEQUENCES OF NATURAL NUMBERS

We consider

 $a_0, a_1, a_2, \ldots, a_k$

with $k \in \mathbb{N}$ and $a_i \in \mathbb{N}$ for $0 \le i \le k$.

ヘロト ヘワト ヘビト ヘビト

FINITE SEQUENCES OF NATURAL NUMBERS

We consider

$$a_0, a_1, a_2, \ldots, a_k$$

with $k \in \mathbb{N}$ and $a_i \in \mathbb{N}$ for $0 \le i \le k$.

Erdös-Szekeres: If $k = n^2 + 1$ $\downarrow \downarrow$ $\exists i_0 < i_1 < \ldots < i_n$, such that: $a_{i_0} \le a_{i_1} \le \ldots \le a_{i_n}$ or $a_{i_0} > a_{i_1} > \ldots > a_{i_n}$.

GENT

ISP-DENSITY

Definitions

- If $f : \mathbb{N} \to \mathbb{N}$ and $X \subseteq \mathbb{N}$, then
 - **g** : $X \to \mathbb{N}$ is called *f*-regressive if

 $g(x) \leq f(x)$, for all $x \in X$.

The principle

Lower bound

Upper bound

ISP-DENSITY

Definitions

- If $f : \mathbb{N} \to \mathbb{N}$ and $X \subseteq \mathbb{N}$, then
 - **g** : $X \to \mathbb{N}$ is called *f*-regressive if

 $g(x) \leq f(x)$, for all $x \in X$.

The principle

Lower bound

Upper bound

■ X is called 0-ISP-dense(f) if

 $|X| > f(\min(X)).$

ISP-DENSITY

Definitions

- If $f : \mathbb{N} \to \mathbb{N}$ and $X \subseteq \mathbb{N}$, then
 - **g** : $X \to \mathbb{N}$ is called *f*-regressive if

 $g(x) \leq f(x)$, for all $x \in X$.

The principle

Lower bound

Upper bound

■ X is called 0-ISP-dense(f) if

 $|X| > f(\min(X)).$

■ X is called (n + 1)-ISP-dense(f) if for all *f*-regressive $g : X \to \mathbb{N}$ there exists a $Y \subseteq X$ such that Y is *n*-ISP-dense(f) and such that $g \upharpoonright Y$ is weakly increasing.

AN EXAMPLE

Let $f(x) = \sqrt{x}$ and $X = \{5, 6, 8, 11, 35, 108, 167, 201\}$. Is X • 0-dense?

AN EXAMPLE

Let $f(x) = \sqrt{x}$ and $X = \{5, 6, 8, 11, 35, 108, 167, 201\}$. Is X

0-dense? Yes, because:

$$|X|=8>\sqrt{5}=\sqrt{\min(X)}.$$

AN EXAMPLE

Let $f(x) = \sqrt{x}$ and $X = \{5, 6, 8, 11, 35, 108, 167, 201\}$. Is X

0-dense? Yes, because:

$$|X|=8>\sqrt{5}=\sqrt{\min(X)}.$$

1-dense?

AN EXAMPLE

Let $f(x) = \sqrt{x}$ and $X = \{5, 6, 8, 11, 35, 108, 167, 201\}$. Is X

0-dense? Yes, because:

$$|X|=8>\sqrt{5}=\sqrt{\min(X)}.$$

■ 1-dense? Yes, because: Let $g: X \to \mathbb{N}$ be $\sqrt{-}$ regressive, i.e.

$$g(x) \leq \sqrt{x}$$
, for all $x \in X$.

Now consider the worst case scenario: g is strictly decreasing "as much as possible".

ISP-DENSITY

Definitions

- If $f : \mathbb{N} \to \mathbb{N}$ and $X \subseteq \mathbb{N}$, then
 - **g** : $X \to \mathbb{N}$ is called *f*-regressive if

 $g(x) \leq f(x)$, for all $x \in X$.

The principle

Lower bound

Upper bound

■ X is called 0-ISP-dense(f) if

 $|X| > f(\min(X)).$

■ X is called (n + 1)-ISP-dense(f) if for all *f*-regressive $g : X \to \mathbb{N}$ there exists a $Y \subseteq X$ such that Y is *n*-ISP-dense(f) and such that $g \upharpoonright Y$ is weakly increasing.

AN EXAMPLE

Let $f(x) = \sqrt{x}$ and $X = \{5, 6, 7, 11, 35, 108, 167, 201\}$. Is X • 0-dense? Yes, because:

$$|X|=9>\sqrt{5}=\sqrt{\min(X)}.$$

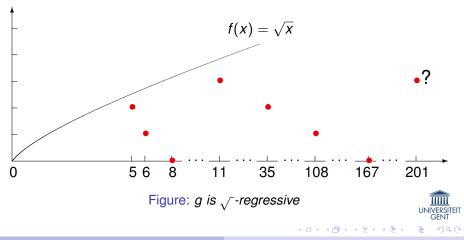
■ 1-dense? Yes, because: Let $g: X \to \mathbb{N}$ be $\sqrt{\}$ -regressive, i.e.

$$g(x) \leq \sqrt{x}$$
, for all $x \in X$.

Now consider the worst case scenario: g is strictly decreasing "as much as possible".

AN EXAMPLE

 $g: \{5, 6, 8, 11, 35, 108, 167, 201\}
ightarrow \mathbb{N}$



Michiel De Smet, Andreas Weiermann Phase Transitions for Weakly Increasing Sequences

AN EXAMPLE

Whatever value g may take in x = 201, it is always possible to find a Y, such that |Y| > 2 and $g \upharpoonright Y$ is weakly increasing. $\Rightarrow X$ is 1-dense.

イロト 不得 とくほ とくほう

AN EXAMPLE

Whatever value g may take in x = 201, it is always possible to find a Y, such that |Y| > 2 and $g \upharpoonright Y$ is weakly increasing. $\Rightarrow X$ is 1-dense.

Is X 2-dense? No, because: Constructed g is counterexample

The principle Lower bound Upper bound

THEOREM AND PROOF

Definition For any $f : \mathbb{N} \to \mathbb{N}$,

 $ISP_f := (\forall n)(\forall a)(\exists b)([a, b] \text{ is } n\text{-}ISP\text{-}dense(f)).$

ヘロト ヘワト ヘビト ヘビト

The principle Lower bound Upper bound

THEOREM AND PROOF

Definition For any $f : \mathbb{N} \to \mathbb{N}$,

 $ISP_f := (\forall n)(\forall a)(\exists b)([a, b] \text{ is } n\text{-}ISP\text{-}dense(f)).$

Remark: (RT₂² \land König's Lemma) \Rightarrow ($\forall f$ ISP_f is true).

ヘロト ヘワト ヘビト ヘビト

The principle Lower bound Upper bound

THEOREM AND PROOF

Definition For any $f : \mathbb{N} \to \mathbb{N}$,

 $ISP_f := (\forall n)(\forall a)(\exists b)([a, b] \text{ is } n\text{-}ISP\text{-}dense(f)).$

Remark: $(RT_2^2 \land K\ddot{o}nig's Lemma) \Rightarrow (\forall f ISP_f is true).$

Theorem 1

 $I\Sigma_1 \vdash ISP_{log}.$

イロト イヨト イヨト

The principle Lower bound Upper bound

THEOREM AND PROOF

Definition For any $f : \mathbb{N} \to \mathbb{N}$,

 $ISP_f := (\forall n)(\forall a)(\exists b)([a, b] \text{ is } n\text{-}ISP\text{-}dense(f)).$

Remark: $(\mathrm{RT}_2^2 \land \mathrm{K\ddot{o}nig}$'s Lemma) $\Rightarrow (\forall f \mathrm{ISP}_f \text{ is true}).$

Theorem 1

 $I\Sigma_1 \vdash ISP_{log}.$

Proof By induction, applying Erdös-Szekeres.

The principle Lower bound Upper bound

Meaning

Theorem 1 \Rightarrow lower bound

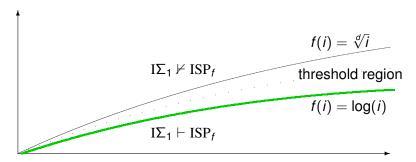


Figure: Phase transitions for ISP_f

UNIVERSITEI GENT

イロト 不得 とくほ とくほう

The principle Lower bound Upper bound

THEOREM AND PROOF

Theorem 2 Let $d \in \mathbb{N}$. Then

 $I\Sigma_1 \nvDash ISP_{\not C}$.

イロト イポト イヨト イヨト

The principle Lower bound Upper bound

THEOREM AND PROOF

Theorem 2 Let $d \in \mathbb{N}$. Then

 $I\Sigma_1 \nvDash ISP_{d}$.

Proof Lemma 1 \land Lemma 2 \Rightarrow Lemma 3. Lemma 3 \Rightarrow Theorem 2.

The principle Lower bound Upper bound

THEOREM AND PROOF

Define

$$F_0(i) := i + 1;$$

$$F_{k+1}(i) := F_k^{d/i}(i);$$

$$F(i) := F_i(i).$$

イロト イポト イヨト イヨト

The principle Lower bound Upper bound

THEOREM AND PROOF

Define

$$F_0(i) := i + 1;$$

$$F_{k+1}(i) := F_k^{d/i}(i);$$

$$F(i) := F_i(i).$$

Then

$$F_i(n) \approx A_i(n)$$

 $F(n) \approx Ack(n)$

 $A_i = i$ th approximation of the Ackermann function Ack.

The principle Lower bound Upper bound

THEOREM AND PROOF

Lemma 1 (Informal)

[*a*, *b*] *n*-ISP-dense($\sqrt[d]{}$) ⇒ ∃*Y* ⊆ [*a*, *b*]: *Y* has nice properties.

The principle Lower bound Upper bound

THEOREM AND PROOF

Lemma 1 (Informal)

[*a*, *b*] *n*-ISP-dense($\sqrt[d]{}$) ⇒ ∃*Y* ⊆ [*a*, *b*]: *Y* has nice properties.

Lemma 1 (Formal)

[a, b] *n*-ISP-dense($\sqrt[d]{}$) ⇒ ∃*Y* ⊆ [a, b] : *Y* is (n - 1)-ISP-dense($\sqrt[d]{}$) and

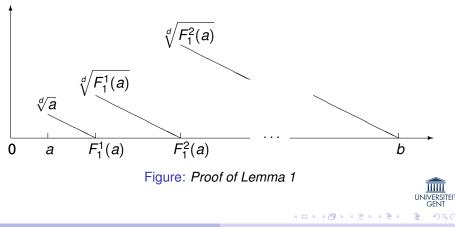
$$\forall i(F_1^{i+1}(a) \leq b \rightarrow |Y \cap [F_1^i(a), F_1^{i+1}(a)]| = 1)$$

The principle Lower bound Upper bound

THEOREM AND PROOF

Proof

Define $G : [a, b] \mapsto \mathbb{N}$, such that G is $\sqrt[d]{}$ -regressive, and:



The principle Lower bound Upper bound

THEOREM AND PROOF

Lemma 2

≈ Lemma 1, but we start from an (n-k)-ISP-dense $(\sqrt[d]{})$ set, $0 < k \le n$.

Proof

 \approx Lemma 1, but we need F_k 's, $0 < k \le n$.

イロト イポト イヨト イヨト

The principle Lower bound Upper bound

THEOREM AND PROOF

Lemma 2

≈ Lemma 1, but we start from an (n - k)-ISP-dense $(\sqrt[d]{})$ set, $0 < k \le n$.

Proof

 \approx Lemma 1, but we need F_k 's, $0 < k \le n$.

Lemma 3 ($Y \subseteq [a, b]$ is *n*-ISP-dense($\sqrt[d]{} \land a \ge 1$) $\Rightarrow \max(Y) \ge F_{n+1}(a)$.

Proof Combine Lemma 1 and Lemma 2.

The principle Lower bound Upper bound

THEOREM AND PROOF

Definition

 $ISP_f(n, a) :=$ the least natural number *b*, such that [a, b] is *n*-ISP-dense(*f*).

Let $a, n \in \mathbb{N}$:

The principle Lower bound Upper bound

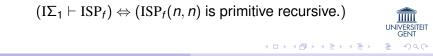
THEOREM AND PROOF

Definition

 $ISP_f(n, a) :=$ the least natural number *b*, such that [a, b] is *n*-ISP-dense(*f*).

Let $a, n \in \mathbb{N}$:

Remark



The principle Lower bound Upper bound

THEOREM AND PROOF

Theorem 2 Let $d \in \mathbb{N}$. Then

 $I\Sigma_1 \nvDash ISP_{\not C}$.

イロト イポト イヨト イヨト

The principle Lower bound Upper bound

THEOREM AND PROOF

Theorem 2 Let $d \in \mathbb{N}$. Then

$I\Sigma_1 \nvDash ISP_{d}$.

Proof of Theorem 2

Lemma 3 \Rightarrow ISP $_{\sqrt[d]{}}(n,a) \geq F_{n+1}(a)$

The principle Lower bound Upper bound

THEOREM AND PROOF

Theorem 2 Let $d \in \mathbb{N}$. Then

$$I\Sigma_1 \nvDash ISP_{\swarrow}$$
.

Proof of Theorem 2

$$\begin{array}{rcl} \mathsf{Lemma 3} & \Rightarrow & \mathrm{ISP}_{\sqrt[d]{}}(n,a) \geq F_{n+1}(a) \\ & \Rightarrow & \mathrm{ISP}_{\sqrt[d]{}}(n,n) \gtrsim F(n,n) \approx \mathsf{Ack}(n,n) \end{array}$$

イロト イポト イヨト イヨト

The principle Lower bound Upper bound

THEOREM AND PROOF

Theorem 2 Let $d \in \mathbb{N}$. Then

$$I\Sigma_1 \nvDash ISP_{\checkmark}$$
.

Proof of Theorem 2

$\begin{array}{rcl} \text{Lemma 3} & \Rightarrow & \text{ISP}_{\not V}(n,a) \geq F_{n+1}(a) \\ & \Rightarrow & \text{ISP}_{\not V}(n,n) \gtrsim F(n,n) \approx \textit{Ack}(n,n) \\ & \Rightarrow & \text{ISP}_{\not V} \text{ is not primitive recursive} \end{array}$

The principle Lower bound Upper bound

THEOREM AND PROOF

Theorem 2 Let $d \in \mathbb{N}$. Then

$$I\Sigma_1 \nvDash ISP_{\checkmark}$$
.

Proof of Theorem 2

$\begin{array}{rcl} \text{Lemma 3} & \Rightarrow & \text{ISP}_{\not{e}}(n,a) \geq F_{n+1}(a) \\ & \Rightarrow & \text{ISP}_{\not{e}}(n,n) \gtrsim F(n,n) \approx \textit{Ack}(n,n) \\ & \Rightarrow & \text{ISP}_{\not{e}}(\text{ is not primitive recursive} \\ & \Rightarrow & \text{I}\Sigma_1 \nvDash \text{ISP}_{\not{e}}. \end{array}$

GENT

PHASE TRANSITIONS The principle WEAKLY INCREASING SEQUENCES Lower bound RELATED RESULTS AND EXPECTATIONS Upper bound

Meaning

Theorem 2 \Rightarrow upper bound

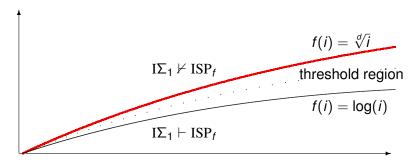


Figure: Phase transitions for ISP_f

UNIVERSITEI GENT

イロト 不得 とくほ とくほう

Sharper threshold region Erdös-Szekeres and Dilworth

SHARPENING THE THRESHOLD REGION

Claim 1

Let *d* be a natural number and $f(i) = i^{\frac{1}{A_d^{-1}(i)}}$. Then

 $I\Sigma_1 \vdash ISP_f$.

イロト イポト イヨト イヨト

Sharper threshold region Erdös-Szekeres and Dilworth

SHARPENING THE THRESHOLD REGION

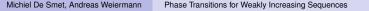
Claim 1

Let *d* be a natural number and $f(i) = i^{\frac{1}{A_d^{-1}(i)}}$. Then

 $I\Sigma_1 \vdash ISP_f$.

Claim 2 Let $f(i) = i^{\frac{1}{Ack^{-1}(i)}}$. Then

 $I\Sigma_1 \nvDash ISP_f$.



GEN'

Sharper threshold region Erdös-Szekeres and Dilworth

SHARPENING THE THRESHOLD REGION

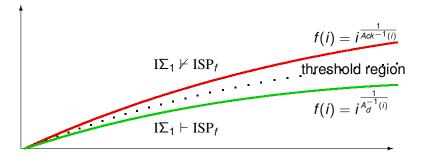


Figure: Phase transitions for ISP_f

Michiel De Smet, Andreas Weiermann Phase Transitions for Weakly Increasing Sequences

UNIVERSITEI GENT

Sharper threshold region Erdös-Szekeres and Dilworth

RELATED RESULTS

Instead of $F : X \to \mathbb{N}$, we now consider $F : X \to \omega^{I}$, where ω is the first infinite ordinal and $I \in \mathbb{N}$.

Sharper threshold region Erdös-Szekeres and Dilworth

RELATED RESULTS

Instead of $F : X \to \mathbb{N}$, we now consider $F : X \to \omega^{I}$, where ω is the first infinite ordinal and $I \in \mathbb{N}$. \Rightarrow definition of ω^{I} -*n*-ISP-density-(*f*).

Similar results can be obtained.

Erdös-Szekeres

The Erdös-Szekeres theorem states that a given sequence a_0, \ldots, a_{n^2} of real numbers contains a weakly increasing subsequence of length n + 1 or a strictly decreasing subsequence of length n + 1.

 \Rightarrow ES-density

Erdös-Szekeres

The Erdös-Szekeres theorem states that a given sequence a_0, \ldots, a_{n^2} of real numbers contains a weakly increasing subsequence of length n + 1 or a strictly decreasing subsequence of length n + 1.

 \Rightarrow ES-density

Dilworth

The Dilworth theorem states that a given partial order with distinct elements a_0, \ldots, a_{n^2} contains a chain of length n + 1 or an antichain of length n + 1.

 \Rightarrow D-density

Sharper threshold region Erdös-Szekeres and Dilworth

THANKS - PERSONAL INFORMATION

Thank you for listening.

Michiel De Smet and Andreas Weiermann {mmdesmet,weierman}@cage.ugent.be

Department of Pure Mathematics and Computer Algebra Ghent University Krijgslaan 281 Building S22 9000 Gent Belgium

