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Simple types

σ := ϕ | σ→σ

(ax) Γ, x :σ ⊢ x :σ

(→ E)
Γ ⊢M :σ→τ Γ ⊢ N :σ

Γ ⊢MN :τ

(→ I)
Γ, x :σ ⊢M :τ

Γ ⊢ λx.M :σ→τ
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Simple types are preserved by reduction

[x : σ] · · · [x : σ]

M τ

M : τ

λx.M : σ→τ

(→ I)

Nσ

N : σ

(λx.M)N : τ

(→ E)

β-red
=⇒

Nσ

N : σ

...

· · ·

Nσ

N : σ

M [N/x]τ

M [N/x] : τ
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Simple types are NOT preserved by expansion

Exactly 1 occurrence of N

Nσ

N : σ

M [N/x]τ

M [N/x] : τ

β-exp
=⇒

[x : σ]

M τ

M : τ

λx.M : σ→τ

(→ I)

Nσ

N : σ

(λx.M)N : τ

(→ E)
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Simple types are NOT preserved by expansion

No occurrences of N

M [N/x]τ

M [N/x] : τ

β-exp
=⇒

M τ

M : τ

λx.M : σ→τ

(→ I)

N : ?

(λx.M)N
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Universal typeΩ

M [N/x]τ

M [N/x] : τ

β-exp
=⇒

[x : Ω]

M τ

M : τ

λx.M : Ω→τ

(→ I)

N : Ω

(λx.M)N

(→ E)
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Simple types are NOT preserved by expansion

Two or more occurrences of N

Nσ1

N : σ1

Nσ2

N : σ2

M [N/x]τ

M [N/x] : τ

β-exp
=⇒

[x : ?] N : ?

(λx.M)N
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Type intersection∩

Nσ1

N : σ1

Nσ2

N : σ2

M [N/x]τ

M [N/x] : τ

β-exp
=⇒

[x : σ1∩σ2]

x : σ1

(∩E)

[x : σ1∩σ2]

x : σ2

(∩E)

Mτ

M : τ

(λx.M) : σ1∩σ2→τ

(→ I)

Nσ1

N : σ1

Nσ2

N : σ2

N : σ1∩σ2

(∩I)

(λx.M)N : τ

(→ E)
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Intersection types

σ := ϕ | σ→σ | Ω | σ∩σ

(ax) Γ, x :σ ⊢ x :σ

(→ E)
Γ ⊢M :σ→τ Γ ⊢ N :σ

Γ ⊢MN :τ

(→ I)
Γ, x :σ ⊢M :τ

Γ ⊢ λx.M :σ→τ
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Intersection types

(Ω) Γ ⊢M : Ω
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Intersection types

(Ω) Γ ⊢M : Ω

(∩I)
Γ ⊢M : σ Γ ⊢M : τ

Γ ⊢M : σ∩τ
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Intersection types

(Ω) Γ ⊢M : Ω

(∩I)
Γ ⊢M : σ Γ ⊢M : τ

Γ ⊢M : σ∩τ

(∩E)
Γ ⊢M : σ∩τ

Γ ⊢M : σ

Γ ⊢M : σ∩τ

Γ ⊢M : τ
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Example

x : (σ → τ)∩σ ⊢ x : (σ → τ)∩σ

x : (σ → τ)∩σ ⊢ x : σ → τ

(∩E)

x : (σ → τ)∩σ ⊢ x : (σ → τ)∩σ

x : (σ → τ)∩σ ⊢ x : σ

(∩E)

x : (σ → τ)∩σ ⊢ xx : τ

(→ E)

⊢ λx.xx : (σ → τ)∩σ → τ

(→ I)
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Type Theories

a type theory ∇ is a set of statements of the form σ ≤∇ τ
including the following axioms and rules:

σ ≤ σ∩σ σ∩τ ≤ σ, σ∩τ ≤ τ

σ ≤ σ′, τ ≤ τ ′ ⇒ σ∩σ′ ≤ τ∩τ ′ σ ∼ σ′, τ ∼ τ ′ ⇒ σ→τ ∼ σ′→τ ′

(σ→τ)∩(σ→ζ) ∼ σ→τ∩ζ σ→Ω ∼ Ω→Ω

σ ≤ σ σ ≤ τ , τ ≤ ζ ⇒ σ ≤ ζ

σ ∼ τ is short for σ ≤ τ and τ ≤ σ
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Subsumption rule

Γ ⊢M : σ σ ≤∇ τ

Γ ⊢M : τ
(≤∇)
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Subsumption rule

Γ ⊢M : σ σ ≤∇ τ

Γ ⊢M : τ
(≤∇)

x : σ→τ∩ζ ⊢ x : σ→τ∩ζ (≤∇)x : σ→τ∩ζ ⊢ x : (σ→τ )∩(σ→ζ) (→ I)⊢ λx.x : (σ→τ∩ζ)→(σ→τ )∩(σ→ζ)
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Subsumption rule

Γ ⊢M : σ σ ≤∇ τ

Γ ⊢M : τ
(≤∇)

x : σ→τ∩ζ ⊢ x : σ→τ∩ζ (≤∇)x : σ→τ∩ζ ⊢ x : (σ→τ )∩(σ→ζ) (→ I)⊢ λx.x : (σ→τ∩ζ)→(σ→τ )∩(σ→ζ)

Γ ⊢∇ M : τ
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The setF∇ of filters

A ∇-filter is a set X of intersection types

such that:

Ω ∈ X

if σ ≤∇ τ and σ ∈ X, then τ ∈ X

if σ, τ ∈ X, then σ∩τ ∈ X

F∇ is the set of filters
↑∇ X is the filter generated by X

↑∇ σ is ↑∇ {σ}
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〈F∇,⊆〉 is anω-algebraic complete lattice

T

��

↑∇ (X ∪ Y )

wwpppppp

''NNNNNN

X
((PPPPPP Y

wwnnnnnnn

X ∩ Y

��

↑∇ Ω
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Interpretation of λ-terms

For any λ-term M and environment

ρ : var → F∇

[[M ]]
F∇
ρ = {τ ∈ T | ∃Γ |= ρ. Γ ⊢M : τ}

where Γ |= ρ iff (x : σ) ∈ Γ implies σ ∈ ρ(x).
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Interpretation of λ-terms

For any λ-term M and environment

ρ : var → F∇

[[M ]]
F∇
ρ = {τ ∈ T | ∃Γ |= ρ. Γ ⊢M : τ}

where Γ |= ρ iff (x : σ) ∈ Γ implies σ ∈ ρ(x).

Is 〈F∇,⊆〉 a λ-model (filter model)?
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Interpretation of λ-terms

For any λ-term M and environment

ρ : var → F∇

[[M ]]
F∇
ρ = {τ ∈ T | ∃Γ |= ρ. Γ ⊢M : τ}

where Γ |= ρ iff (x : σ) ∈ Γ implies σ ∈ ρ(x).

Is 〈F∇,⊆〉 a λ-model (filter model)?

iff Γ ⊢∇ λx.M : σ→τ implies

Γ, x : σ ⊢∇ M : τ
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Filter Models

With suitable type theories we can obtain filter models
isomorphic to

Scott inverse limit models;

Scott Pω model;

Plotkin-Engeler models;

Abramsky-Ong model;

Girard qualitative model;

Girard quantitative model;

. . .
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Filter Models

With suitable type theories we can obtain filter models
isomorphic to

Scott inverse limit models;

Scott Pω model;

Plotkin-Engeler models;

Abramsky-Ong model;

Girard qualitative model;

Girard quantitative model;

. . .
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Filter models versus inverse limit models

We can describe an inverse limit model D∞ by taking:

the types freely generated by closing (a set of atomic
types corresponding to) the elements of D0 under the
function type constructor → and the intersection type
constructor ∩;

model
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Filter models versus inverse limit models

We can describe an inverse limit model D∞ by taking:

the types freely generated by closing (a set of atomic
types corresponding to) the elements of D0 under the
function type constructor → and the intersection type
constructor ∩;

the preorder between types induced by reversing the
order in D0 and by encoding the initial projection,
according to the correspondence:

function type constructor 7→ step function
intersection type constructor 7→ join

model
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Example

n̂

��
n

��
⊥

D0

ν̂ ≤ ν ≤ Ω
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Example

n̂

��
n

��
⊥

D0

⊥⇒n̂

��
n⇒n̂

��
n̂⇒n

��
⊥⇒⊥

[D0 → D0]

ν̂ ≤ ν ≤ Ω
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Example

n̂

��
n

��
⊥

D0

⊥⇒n̂

��
n⇒n̂

��
n̂⇒n

��
⊥⇒⊥

[D0 → D0]

ν̂ ≤ ν ≤ Ω

i0(n̂) = n⇒n̂ i0(n) = n̂⇒n i0(⊥) = ⊥⇒⊥

ν̂ ∼ ν→ν̂ ν ∼ ν̂→ν Ω ∼ Ω→Ω

properties
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Stone dualities

we started from types and arrived to models:
what is the framework?
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Stone dualities

we started from types and arrived to models:
what is the framework?

Stone dualities
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Stone dualities

we started from types and arrived to models:
what is the framework?

Stone dualities

topological spaces as partial orders

Stone spaces as Boolean algebras (Stone, 36)

Scott domains as information systems (Scott, 82)

ω-algebraic complete lattices as intersection type theories
(Coppo et al., 84)

SFP domains as pre-locales (Abramsky, 91)
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semantics of terms

'
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$

%
• τ
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type assignment
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semantics of types

'
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%
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&
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%
• d

'

&

$

%

• M

&%
'$

E
E
E
E
E
E
E
E
E
E
E
EE

�
�
�
�
�
�
�
�
�
�
�
��

intersection types type theories filter models Stone duality properties of λ-terms questions extra LC 2008 – pp.33/60



Stone duality
d = [[M ]]

d ∈ [[τ ]] ⇔ ⊢M : τ

'

&

$

%
• τ

'

&

$

%
• d

'
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%

• M!!!!!!!!!!!!!!!
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A filter model characterizing normalising terms

M ∈ N iff M→→β a normal form

M ∈ PN iff ∀
→

N ∈ N M
→

N ∈ N'

&

$

%
Λ

'
&

$
%

PN

'

&

$

%
N

ν̂ ≤ ν ≤ Ω
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A filter model characterizing normalising terms

M ∈ PN implies ∀N ∈ N MN ∈ PN

M : ν̂ implies ∀N : ν MN : ν̂

ν̂ ∼ ν→ν̂
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A filter model characterizing normalising terms

M ∈ PN implies ∀N ∈ N MN ∈ PN

M : ν̂ implies ∀N : ν MN : ν̂

ν̂ ∼ ν→ν̂

M ∈ N implies ∀N ∈ PN MN ∈ N

M : ν implies ∀N : ν̂ MN : ν

ν ∼ ν̂→ν
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A filter model characterizing normalising terms

M ∈ PN implies ∀N ∈ N MN ∈ PN

M : ν̂ implies ∀N : ν MN : ν̂

ν̂ ∼ ν→ν̂

M ∈ N implies ∀N ∈ PN MN ∈ N

M : ν implies ∀N : ν̂ MN : ν

ν ∼ ν̂→ν

M ∈ Λ implies ∀N ∈ Λ MN ∈ Λ

M : Ω implies ∀N : Ω MN : Ω

Ω ∼ Ω→Ω

isomorphism
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A filter model characterizing head normalising terms

M ∈ HN iff M→→β λ
→

x .y
→

N

M ∈ PHN iff ∀
→

N ∈ Λ M
→

N ∈ HN'

&

$

%
Λ

'
&

$
%

PHN

'

&

$

%
HN

µ̂ ≤ µ ≤ Ω
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A filter model characterizing head normalising terms

M ∈ PHN implies ∀N ∈ Λ MN ∈ PHN

M : µ̂ implies ∀N : Ω MN : µ̂

µ̂ ∼ Ω→µ̂
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A filter model characterizing head normalising terms

M ∈ PHN implies ∀N ∈ Λ MN ∈ PHN

M : µ̂ implies ∀N : Ω MN : µ̂

µ̂ ∼ Ω→µ̂

M ∈ HN implies ∀N ∈ PHN MN ∈ HN

M : µ implies ∀N : µ̂ MN : µ

µ ∼ µ̂→µ
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A filter model characterizing head normalising terms

M ∈ PHN implies ∀N ∈ Λ MN ∈ PHN

M : µ̂ implies ∀N : Ω MN : µ̂

µ̂ ∼ Ω→µ̂

M ∈ HN implies ∀N ∈ PHN MN ∈ HN

M : µ implies ∀N : µ̂ MN : µ

µ ∼ µ̂→µ

M ∈ Λ implies ∀N ∈ Λ MN ∈ Λ

M : Ω implies ∀N : Ω MN : Ω

Λ ∼ Λ→Λ
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Intersection types characterize also

closable terms

terms of the I -calculus

persistently normalizable terms

. . .
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Intersection types characterize also

closable terms

terms of the I -calculus

persistently normalizable terms

. . .
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Intersection types characterize also

closable terms

terms of the I -calculus

weak head normalising terms

. . .
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Intersection types characterize also

closable terms

terms of the I -calculus

weak head normalising terms

. . .
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Intersection types characterize also

closable terms

terms of the I -calculus

weak head normalising terms

. . .
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A filter model characterising...

Λ

WN

OO

PWN

66nnnnnnnn

HN

ggNNNNNNN

PHN

hhPPPPPPPP

77ppppppp

N

ddHHHHHH

PN

ggNNNNNNN

::vvvvvv
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Inverse limit model

n̂

����
��

��?
??

?

ĥ

��@
@@

@ n

��~~
~~

h

��
⊥

D0

⊥⇒n̂

��

(⊥⇒ĥ) ⊔ (n⇒n̂)

vv **

⊥⇒ĥ

))

(ĥ⇒h) ⊔ (n̂⇒n)

tt
ĥ⇒h

��
⊥⇒⊥

��
⊥

[D0 → D0]⊥

i0(n̂) = (⊥⇒ĥ) ⊔ (n⇒n̂) i0(n) = (ĥ⇒h) ⊔ (n̂⇒n)

i0(ĥ) = ⊥⇒ĥ i0(h) = ĥ⇒h i0(⊥) = ⊥
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Types and preorder

n̂

����
��

��<
<<
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ĥ

��<
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< n
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h
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⊥

correspondence
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Types and preorder

n̂
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h
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⊥

ν̂

µ̂

@@����
ν

^^<<<<

µ

@@����
^^===

Ω

OO
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⊥
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µ̂

@@����
ν

^^<<<<

µ
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Ω

OO

i0(n̂) = (⊥⇒ĥ) ⊔ (n⇒n̂) i0(n) = (ĥ⇒h) ⊔ (n̂⇒n)

i0(ĥ) = ⊥⇒ĥ i0(h) = ĥ⇒h
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Types and preorder

n̂

����
��

��<
<<

<

ĥ

��<
<<

< n

����
��

h

��
⊥

ν̂

µ̂

@@����
ν

^^<<<<

µ

@@����
^^===

Ω

OO

i0(n̂) = (⊥⇒ĥ) ⊔ (n⇒n̂) i0(n) = (ĥ⇒h) ⊔ (n̂⇒n)

i0(ĥ) = ⊥⇒ĥ i0(h) = ĥ⇒h

ν̂ ∼ (Ω→µ̂)∩(ν→ν̂) ν ∼ (µ̂→µ)∩(ν̂→ν)

µ̂ ∼ Ω→µ̂ µ ∼ µ̂→µ

correspondence
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Main Theorem

M ∈ PN iff Γν̂ ⊢M : ν̂

M ∈ N iff Γν̂ ⊢M : ν

M ∈ PHN iff Γν̂ ⊢M : µ̂

M ∈ HN iff Γν̂ ⊢M : µ

M ∈ PWN iff Γν̂ ⊢M : Ωn→Ω for all n ∈ IN

M ∈ WN iff Γν̂ ⊢M : Ω→Ω

Γν̂ = {x : ν̂ | ∀x ∈ var}
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Open problems

can we characterize in some significant way the class
of evaluation properties which we can characterize
using filter models?

is there a method for going from a logical specification
of a property to the appropriate filter model?

which properties cannot be characterised in the same
filter model?

which properties must be characterised in the same
filter model?
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questions
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questions

thank you for your attention
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Klop’s extendedλ-calculusΛ⋆

λ⋆-terms
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Klop’s extendedλ-calculusΛ⋆

λ⋆-terms
S ::= x | λx.S | SS | [S, S]
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λ⋆-terms
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[S, T1, . . . , Tn] is short for [. . . [[S, T1], T2] . . . , Tn]
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λ⋆-terms
S ::= x | λx.S | SS | [S, S]

[S, T1, . . . , Tn] is short for [. . . [[S, T1], T2] . . . , Tn]

−→

κ

intersection types type theories filter models Stone duality properties of λ-terms questions extra LC 2008 – pp.51/60



Klop’s extendedλ-calculusΛ⋆

λ⋆-terms
S ::= x | λx.S | SS | [S, S]

[S, T1, . . . , Tn] is short for [. . . [[S, T1], T2] . . . , Tn]

−→

κ

[λx.S, U1, . . . , Un]T −→

κ
[S[x := T ], U1, . . . , Un]

if x ∈ FV(S)
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Klop’s extendedλ-calculusΛ⋆

λ⋆-terms
S ::= x | λx.S | SS | [S, S]

[S, T1, . . . , Tn] is short for [. . . [[S, T1], T2] . . . , Tn]

−→

κ

[λx.S, U1, . . . , Un]T −→

κ
[S[x := T ], U1, . . . , Un]

if x ∈ FV(S)

[λx.S, U1, . . . , Un]T −→

κ
[S,U1, . . . , Un, T ]

if x 6∈ FV(S)
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An inverse limit model for SN ⋆ andPSN ⋆

strict function f(⊥) = ⊥
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An inverse limit model for SN ⋆ andPSN ⋆

strict function f(⊥) = ⊥

ŝ

��
s

��
⊥

D0
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An inverse limit model for SN ⋆ andPSN ⋆

strict function f(⊥) = ⊥
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��
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��
⊥

D0

s⇒ŝ
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[D0 →⊥ D0]
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An inverse limit model for SN ⋆ andPSN ⋆

strict function f(⊥) = ⊥
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D0

s⇒ŝ
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ŝ⇒s

��
⊥⇒⊥

[D0 →⊥ D0]

S ∈ PSN ⋆, T ∈ SN ⋆ implies ST ∈ PSN ⋆
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An inverse limit model for SN ⋆ andPSN ⋆

strict function f(⊥) = ⊥

ŝ

��
s
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⊥

D0

s⇒ŝ
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ŝ⇒s

��
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[D0 →⊥ D0]

S ∈ PSN ⋆, T ∈ SN ⋆ implies ST ∈ PSN ⋆
i
S
0
(ŝ) = s⇒ŝ
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An inverse limit model for SN ⋆ andPSN ⋆
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S
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(ŝ) = s⇒ŝ

S ∈ SN ⋆, T ∈ PSN ⋆ implies ST ∈ SN ⋆
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An inverse limit model for SN ⋆ andPSN ⋆

strict function f(⊥) = ⊥
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ŝ⇒s

��
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[D0 →⊥ D0]

S ∈ PSN ⋆, T ∈ SN ⋆ implies ST ∈ PSN ⋆
i
S
0
(ŝ) = s⇒ŝ

S ∈ SN ⋆, T ∈ PSN ⋆ implies ST ∈ SN ⋆
i
S
0
(s) = ŝ⇒s
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An inverse limit model for SN ⋆ andPSN ⋆

strict function f(⊥) = ⊥

ŝ
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[D0 →⊥ D0]

S ∈ PSN ⋆, T ∈ SN ⋆ implies ST ∈ PSN ⋆
i
S
0
(ŝ) = s⇒ŝ

S ∈ SN ⋆, T ∈ PSN ⋆ implies ST ∈ SN ⋆
i
S
0
(s) = ŝ⇒s

S ∈ Λ⋆, T ∈ Λ⋆ implies ST ∈ Λ⋆

intersection types type theories filter models Stone duality properties of λ-terms questions extra LC 2008 – pp.52/60



An inverse limit model for SN ⋆ andPSN ⋆

strict function f(⊥) = ⊥

ŝ
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An inverse limit model for SN ⋆ andPSN ⋆
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i
S
0
(⊥) = ⊥⇒⊥
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Simple easy terms

A filter scheme S is a mapping: (∇, ζ) → ∇′

A lambda term E is simple easy if there exists a filter
scheme SE such that

[[E]]∇
′
=↑∇

′

ζ ⊔ [[E]]∇

where

∇′ = SE(∇, ζ)

∇′ induces a filter model whenever ∇ induces a filter
model
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Some simple easy terms

W∗ ≡ λx.xx W2 ≡ W∗W∗ I ≡ λx.x

W2 SW2
(∇, ζ) = ∇∪ {ϕ ∼ ϕ→ζ}

W2W2 SW2W2
(∇, ζ) = ∇∪ {ψ ∼ (ψ→ω) ∩ (ψ→ω→ζ),

ω ∼ φ→ω, φ ∼ ω→ω}

W2I SW2I(∇, ζ) = ∇∪ {α ∼ (γ→α) ∩ (β→δ→ζ),

β ∼ γ→α, γ ∼ γ→β,

δ ∼ η→η, η ∼ δ→η,

α ≤ β ≤ γ}
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Key property of simple easy terms

If E is a simple easy term then there exists

a filter model F∇ in which

[[E]]∇ =↑∇ {σ ∈ T | P(σ)} where P is a

“continuous” predicate on types.
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Semantic proofs of easiness

a closed term E is easy if, for any other

closed term M , the theory λβ + {M = E}

is consistent

all simple easy terms are easy
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Consistency ofλ-theories

The λ-theory J is axiomatized by

W2xx = x; W2xy = W2yx
W2x(W2yz) = W2(W2xy)z
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Consistency ofλ-theories

The λ-theory J is axiomatized by

W2xx = x; W2xy = W2yx
W2x(W2yz) = W2(W2xy)z

W2 is simple easy
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Consistency ofλ-theories

The λ-theory J is axiomatized by

W2xx = x; W2xy = W2yx
W2x(W2yz) = W2(W2xy)z

W2 is simple easy

idea: interpret W2 as the join operator on filters
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Consistency ofλ-theories

The λ-theory J is axiomatized by

W2xx = x; W2xy = W2yx
W2x(W2yz) = W2(W2xy)z

W2 is simple easy

idea: interpret W2 as the join operator on filters

the join operator on filters is a filter generated by a
continuous predicate

U =↑▽ {σ→τ→σ∩τ}

P(Σ▽, ρ) ⇔ ρ ≡ σ→τ→σ∩τ
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Minimal fixed point operator

For all simple easy terms E there are filter models F∇ such
that [[E]]▽ represents the minimal fixed point operator fix
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Minimal fixed point operator

For all simple easy terms E there are filter models F∇ such
that [[E]]▽ represents the minimal fixed point operator fix

Warning: there is no fixed point combinator Ỹ such that
[[Ỹ]]▽ represents fix in each filter model F∇

Counter-example: Park model where the interpretation
of each closed term (included ỸI) is greater than ⊥
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Filter models for recursive terms

Λµ-terms:
M ::= x |MM | λx.M | µx.M

reduction rule:
µx.M →M [µx.M/x]
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Filter models for recursive terms

Λµ-terms:
M ::= x |MM | λx.M | µx.M

reduction rule:
µx.M →M [µx.M/x]

For all simple easy terms E there are filter

models F∇ such that

[[E(λx.M)]]▽ = [[µx.M ]]▽

for all M ∈ Λµ
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Open problems

does easiness imply simple easiness?

which λ-theories can be proved

consistent using the present approach?

which operators can be equated to

simple easy terms?
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