Ramsey's theorem and cone avoidance

Damir Dzhafarov

Department of Mathematics University of Chicago

8 July, 2008/Logic Colloquium, Bern

Definition

Let $X \subseteq \omega$ be an infinite set and $n, k \in \omega$.

1
$$[X]^n := \{Y \subset X : |Y| = n\}.$$

- ② A k-coloring on X of exponent n is a function $f : [X]^n \to k = \{0, ..., k 1\}.$
- **③** A set $H \subseteq X$ is homogeneous for f if $f \upharpoonright [H]^n$ is constant.

Definition

Let $X \subseteq \omega$ be an infinite set and $n, k \in \omega$.

$$[X]^n := \{ Y \subset X : |Y| = n \}.$$

- ② A k-coloring on X of exponent n is a function $f : [X]^n \to k = \{0, ..., k 1\}.$
- **3** A set $H \subseteq X$ is homogeneous for f if $f \upharpoonright [H]^n$ is constant.

Ramsey's theorem

For every $n, k \ge 1$, every $f : [\omega]^n \to k$ admits an infinite homogeneous set.

• We restrict to computable colorings and ask about the possible complexity of infinite homogeneous sets.

• We restrict to computable colorings and ask about the possible complexity of infinite homogeneous sets.

Theorem (Specker, 1969)

There exists a computable 2-coloring of $[\omega]^2$ admitting no infinite computable homogeneous set.

• We restrict to computable colorings and ask about the possible complexity of infinite homogeneous sets.

Theorem (Specker, 1969)

There exists a computable 2-coloring of $[\omega]^2$ admitting no infinite computable homogeneous set.

Theorem (Jockusch, 1972)

There exists a computable 2-coloring of $[\omega]^2$ admitting no infinite homogeneous set computable in 0'.

Question (Jockusch, 1972)

Does every computable 2-coloring of $[\omega]^2$ admit an infinite homogeneous set which does not compute 0'?

Theorem (Seetapun, 1995)

Given $C_0, C_1, \ldots >_T 0$, every computable $f : [\omega]^2 \to 2$ admits an infinite homogeneous set H with $C_i \not\leq_T H$ for all i.

Theorem (Seetapun, 1995)

Given $C_0, C_1, \ldots >_T 0$, every computable $f : [\omega]^2 \to 2$ admits an infinite homogeneous set H with $C_i \not\leq_T H$ for all i.

For every $n, k \ge 2$, every computable $f : [\omega]^n \to k$ has an infinite homogeneous set H with $H' \le_T 0^{(n)}$.

For every $n, k \ge 2$, every computable $f : [\omega]^n \to k$ has an infinite homogeneous set H with $H' \le_T 0^{(n)}$.

Question (Jockusch, 1972)

Does every computable 2-coloring of $[\omega]^2$ admit an infinite homogeneous set H with $H'' \leq_T 0''$ (i.e., which is low₂)?

Question (Jockusch, 1972)

Does every computable 2-coloring of $[\omega]^2$ admit an infinite homogeneous set H with $H'' \leq_T 0''$ (i.e., which is low₂)?

Definition

A degree **d** is *PA* over **0**', written $\mathbf{d} \gg \mathbf{0}'$, if every infinite 0'-computable tree in $2^{<\omega}$ has an infinite path of degree $\leq \mathbf{d}$.

Definition

A degree **d** is *PA* over **0**', written $\mathbf{d} \gg \mathbf{0}'$, if every infinite 0'-computable tree in $2^{<\omega}$ has an infinite path of degree $\leq \mathbf{d}$.

• There exists an infinite 0'-computable tree in $2^{<\omega}$ each of whose infinite paths has degree $\gg 0'$.

Definition

A degree **d** is *PA* over **0**', written $\mathbf{d} \gg \mathbf{0}'$, if every infinite 0'-computable tree in $2^{<\omega}$ has an infinite path of degree $\leq \mathbf{d}$.

- There exists an infinite 0'-computable tree in $2^{<\omega}$ each of whose infinite paths has degree $\gg 0'$.
- By the Low Basis Theorem relativized to $\mathbf{0}'$, there exists a degree $\mathbf{d} \gg \mathbf{0}'$ which is low over $\mathbf{0}'$ (i.e., $\mathbf{d}' \leq \mathbf{0}''$).

Definition

A degree **d** is *PA* over **0**', written $\mathbf{d} \gg \mathbf{0}'$, if every infinite 0'-computable tree in $2^{<\omega}$ has an infinite path of degree $\leq \mathbf{d}$.

- There exists an infinite 0'-computable tree in $2^{<\omega}$ each of whose infinite paths has degree $\gg 0'$.
- By the Low Basis Theorem relativized to 0', there exists a degree $d \gg 0'$ which is low over 0' (i.e., $d' \leq 0''$).
- If a is low over 0' and $b' \leq a$ then $b'' \leq a' \leq 0'',$ so b is low_2.

Theorem (Cholak, Jockusch, and Slaman, 2001)

Given $\mathbf{d} \gg \mathbf{0}'$, every computable $f : [\omega]^2 \to 2$ admits an infinite homogeneous set H with $\deg(H)' \leq \mathbf{d}$.

Theorem (Cholak, Jockusch, and Slaman, 2001)

Given $\mathbf{d} \gg \mathbf{0}'$, every computable $f : [\omega]^2 \to 2$ admits an infinite homogeneous set H with $\deg(H)' \leq \mathbf{d}$.

Question (Cholak, Jockusch, and Slaman, 2001)

Given $C >_T 0$, does every computable $f : [\omega]^2 \to 2$ admit an infinite low₂ homogeneous set H with $C \not\leq_T H$?

Question (Cholak, Jockusch, and Slaman, 2001)

Given $C >_T 0$, does every computable $f : [\omega]^2 \to 2$ admit an infinite low₂ homogeneous set H with $C \not\leq_T H$?

Cone avoidance and low₂ness

Theorem (Dzhafarov and Jockusch)

Given $C_0, C_1, \ldots >_T 0$ with $\bigoplus_i C_i \leq_T 0'$ and $\mathbf{d} \gg \mathbf{0}'$, every computable $f : [\omega]^2 \to 2$ admits an infinite homogeneous set H with $\deg(H)' \leq \mathbf{d}$ and $C_i \not\leq_T H$ for all i.

Cone avoidance and low₂ness

Theorem (Dzhafarov and Jockusch)

Given $C_0, C_1, \ldots >_T 0$ with $\bigoplus_i C_i \leq_T 0'$ and $\mathbf{d} \gg \mathbf{0}'$, every computable $f : [\omega]^2 \to 2$ admits an infinite homogeneous set H with deg $(H)' \leq \mathbf{d}$ and $C_i \not\leq_T H$ for all i.

Cone avoidance and low₂ness

Theorem (Dzhafarov and Jockusch)

Given $C_0, C_1, \ldots >_T 0$ with $\bigoplus_i C_i \leq_T 0'$ and $\mathbf{d} \gg \mathbf{0}'$, every computable $f : [\omega]^2 \to 2$ admits an infinite homogeneous set H with deg $(H)' \leq \mathbf{d}$ and $C_i \not\leq_T H$ for all i.

Corollary (Dzhafarov and Jockusch)

Given $0 <_T C \leq_T 0'$, every computable $f : [\omega]^2 \to 2$ admits an infinite low₂ homogeneous set H with $C \leq_T H$.

Corollary (Dzhafarov and Jockusch)

Given $0 <_T C \leq_T 0'$, every computable $f : [\omega]^2 \to 2$ admits an infinite low₂ homogeneous set H with $C \leq_T H$.

• The case $C \nleq_T 0'$ is handled by analyzing the subcases $C \leq_T 0''$ and $C \nleq_T 0''$.

Theorem (Dzhafarov and Jockusch)

Given $C >_T 0$, every computable $f : [\omega]^2 \to 2$ admits an infinite low₂ homogeneous set H with $C \not\leq_T H$.

• A more careful case analysis yields the following extension:

Theorem (Dzhafarov and Jockusch)

Given $C_0, \ldots, C_n >_T 0$, every computable $f : [\omega]^2 \to 2$ admits an infinite low₂ homogeneous set H with $C_i \not\leq_T H$ for each $i \leq n$.

Definition

Degrees **a** and **b** form *a minimal pair* if $\mathbf{a} \cap \mathbf{b} = \mathbf{0}$.

Open question

Given any noncomputable set C and any degree $\mathbf{d} \gg \mathbf{0}'$, does every computable $f : [\omega]^2 \to 2$ admit an infinite homogeneous set H with deg(H)' $\leq \mathbf{d}$ and C \leq_T H?

Open question

Given any noncomputable set C and any degree $\mathbf{d} \gg \mathbf{0}'$, does every computable $f : [\omega]^2 \to 2$ admit an infinite homogeneous set H with deg(H)' $\leq \mathbf{d}$ and $C \leq_T H$?

Open question (Simpson)

Does every computable $f : [\omega]^2 \to 2$ admit infinite homogeneous sets H_0, H_1 such that deg (H_0) and deg (H_1) form a minimal pair and $H_0 \oplus H_1$ is low₂?

 P. A. Cholak, C. G. Jockusch, Jr., and T. A. Slaman On the strength of Ramsey's theorem for pairs.
J. Symbolic Logic 66 (2001), no. 1, 1–55

- D. D. Dzhafarov and C. G. Jockusch, Jr. Ramsey's theorem and cone avoidance Submitted
- C. G. Jockusch, Jr.

Ramsey's theorem and recursion theory. J. Symbolic Logic **37** (1972), no. 2, 268–280

Thank you for your attention.