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Background

Definition

Let X ⊆ ω be an infinite set and n, k ∈ ω.

1 [X ]n := {Y ⊂ X : |Y | = n}.
2 A k-coloring on X of exponent n is a function

f : [X ]n → k = {0, . . . , k − 1}.
3 A set H ⊆ X is homogeneous for f if f � [H]n is constant.

Ramsey’s theorem

For every n, k ≥ 1, every f : [ω]n → k admits an infinite
homogeneous set.
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Background

We restrict to computable colorings and ask about the
possible complexity of infinite homogeneous sets.

Theorem (Specker, 1969)

There exists a computable 2-coloring of [ω]2 admitting no infinite
computable homogeneous set.

Theorem (Jockusch, 1972)

There exists a computable 2-coloring of [ω]2 admitting no infinite
homogeneous set computable in 0′.
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Cone non-avoidance

Theorem (Jockusch, 1972)

For every n ≥ 3, there exists a computable 2-coloring of [ω]n all of
whose infinite homogeneous sets compute 0(n−2).
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Cone non-avoidance

Theorem (Jockusch, 1972)

For every n ≥ 3, there exists a computable 2-coloring of [ω]n all of
whose infinite homogeneous sets compute 0(n−2).
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Cone avoidance

Question (Jockusch, 1972)

Does every computable 2-coloring of [ω]2 admit an infinite
homogeneous set which does not compute 0′?
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Cone avoidance

Theorem (Seetapun, 1995)

Given C0, C1, . . . >T 0, every computable f : [ω]2 → 2 admits an
infinite homogeneous set H with Ci �T H for all i .
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Lowness over 0(n)

Theorem (Jockusch, 1972)

For every n, k ≥ 2, every computable f : [ω]n → k has an infinite
homogeneous set H with H ′ ≤T 0(n).
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Low2ness

Question (Jockusch, 1972)

Does every computable 2-coloring of [ω]2 admit an infinite
homogeneous set H with H ′′ ≤T 0′′ (i.e., which is low2)?

0

0

0

Low2 degrees (d ≤ 0)

Damir Dzhafarov Ramsey’s theorem and cone avoidance



Low2ness

Question (Jockusch, 1972)

Does every computable 2-coloring of [ω]2 admit an infinite
homogeneous set H with H ′′ ≤T 0′′ (i.e., which is low2)?

0

0

0

Damir Dzhafarov Ramsey’s theorem and cone avoidance



Low2ness

Recall...

Definition

A degree d is PA over 0′, written d� 0′, if every infinite
0′-computable tree in 2<ω has an infinite path of degree ≤ d.

There exists an infinite 0′-computable tree in 2<ω each of
whose infinite paths has degree � 0′.

By the Low Basis Theorem relativized to 0′, there exists a
degree d� 0′ which is low over 0′ (i.e., d′ ≤ 0′′).

If a is low over 0′ and b′ ≤ a then b′′ ≤ a′ ≤ 0′′, so b is low2.
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Low2ness

Theorem (Cholak, Jockusch, and Slaman, 2001)

Given d� 0′, every computable f : [ω]2 → 2 admits an infinite
homogeneous set H with deg(H)′ ≤ d.
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Cone avoidance and low2ness

Question (Cholak, Jockusch, and Slaman, 2001)

Given C >T 0, does every computable f : [ω]2 → 2 admit an
infinite low2 homogeneous set H with C �T H?
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Cone avoidance and low2ness

Theorem (Dzhafarov and Jockusch)

Given C0, C1, . . . >T 0 with ⊕iCi ≤T 0′ and d� 0′, every
computable f : [ω]2 → 2 admits an infinite homogeneous set H
with deg(H)′ ≤ d and Ci �T H for all i .
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Cone avoidance and low2ness

Corollary (Dzhafarov and Jockusch)

Given 0 <T C ≤T 0′, every computable f : [ω]2 → 2 admits an
infinite low2 homogeneous set H with C �T H.

The case C �T 0′ is handled by analyzing the subcases
C ≤T 0′′ and C �T 0′′.

Theorem (Dzhafarov and Jockusch)

Given C >T 0, every computable f : [ω]2 → 2 admits an infinite
low2 homogeneous set H with C �T H.
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Cone avoidance and low2ness

A more careful case analysis yields the following extension:

Theorem (Dzhafarov and Jockusch)

Given C0, . . . , Cn >T 0, every computable f : [ω]2 → 2 admits an
infinite low2 homogeneous set H with Ci �T H for each i ≤ n.
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Low2ness and minimal pairs

Recall...

Definition

Degrees a and b form a minimal pair if a ∩ b = 0.
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Low2ness and minimal pairs

Theorem (Dzhafarov and Jockusch)

Every computable f : [ω]2 → 2 admits infinite low2 homogeneous
sets H0, H1 such that deg(H0) and deg(H1) form a minimal pair.

0

0

Low2 degrees

Damir Dzhafarov Ramsey’s theorem and cone avoidance



Low2ness and minimal pairs
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Low2ness and minimal pairs

Theorem (Dzhafarov and Jockusch)

Every computable f : [ω]2 → 2 admits infinite low2 homogeneous
sets H0, H1 such that deg(H0) and deg(H1) form a minimal pair.
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Questions

Open question

Given any noncomputable set C and any degree d� 0′, does
every computable f : [ω]2 → 2 admit an infinite homogeneous set
H with deg(H)′ ≤ d and C �T H?

Open question (Simpson)

Does every computable f : [ω]2 → 2 admit infinite homogeneous
sets H0, H1 such that deg(H0) and deg(H1) form a minimal pair
and H0 ⊕ H1 is low2?
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Thank you for your attention.
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