# First-Order Logical Duality

Henrik Forssell

June 2008



# Algebra-geometry, syntax-semantics

Stone duality—the fact that the 'algebraic' category of Boolean algebras is dual to the 'geometric' category of Stone spaces

#### $\textbf{BA}^{\mathrm{op}} \simeq \textbf{Stone}$

has a logical interpretation as a syntax-semantics duality for classical propositional logic.

We present a generalization to first-order logic, which yields the propositional logical Stone duality as a special case.

# Table of Contents

#### Introduction

- Stone duality-the propositional case
- Logical duality-the setup
- 2 Representation Theorem
  - Outline of main representation result
- Syntax-Semantics Duality

The full text can be downloaded from http://folk.uio.no/jonf/ Introduction - Stone Duality-The Propositional Case

# Logical interpretation - algebras

A propositional theory,  ${\mathbb T}$  can be seen as a Boolean algebra.

#### Definition

For a propositional theory  $\mathbb{T}$ , the *Lindenbaum-Tarski algebra*,  $L_{\mathbb{T}}$  of  $\mathbb{T}$  consists of equivalence classes  $[\phi]$  of formulas, where

$$\phi \sim \psi \Leftrightarrow \mathbb{T} \vdash \phi \leftrightarrow \psi,$$

ordered by provability:

$$[\phi] \leq [\psi] \Leftrightarrow \mathbb{T} \vdash \phi \to \psi.$$

The Lindebaum-Tarski (LT) algebra of a propositional theory is a Boolean algebra. Conversely, any Boolean algebra is the LT-algebra of a classical propositional theory

$$\mathcal{B}\cong L_{\mathbb{T}_{\mathcal{B}}}.$$

Introduction — Stone Duality—The Propositional Case

### Logical interpretation - Stone spaces

For a propositional theory  $\mathbb{T}$ , a (2-valued) model is an assignment of formulas to the values 1 (true) and 0 (false) which preserves provability, and so can be considered to be a morphism of Boolean algebras

$$L_{\mathbb{T}} \longrightarrow 2.$$

Conversely, such a morphism can be seen as a model of  $\mathbb{T}$ . Alternatively, these morphisms can be seen as ultra-filters of  $L_{\mathbb{T}}$ . Therefore, the Stone space corresponding to  $L_{\mathbb{T}}$  can be presented as the set of 'models'

$$X_{L_{\mathbb{T}}} := \operatorname{Hom}_{\mathbf{BA}}(L_{\mathbb{T}}, 2)$$

equipped with the 'logical' topology defined by basic opens

$$U_{\phi} = \{ \mathbf{M} \models \mathbb{T} \mid \mathbf{M} \models \phi \}$$

for  $\phi$  a formula of  $\mathbb{T}$ .

Introduction - Stone Duality-The Propositional Case

# Representing Boolean algebras as spaces of models 1

A Boolean algebra  $\mathcal{B}$  can be recovered from its Stone space of models (or ultra-filters)  $X_{\mathcal{B}}$ . E.g. as follows. The map  $U : \mathcal{B} \to \mathcal{O}(X_{\mathcal{B}})$  defined by  $b \mapsto \{f \in X_{\mathcal{B}} \mid f(b) = 1\}$  lifts to an *isomorphism of frames*  $\hat{U}$ ,



where

- $Idl(\mathcal{B})$  is the ideal completion of  $\mathcal{B}$ ;
- $P: \mathcal{B} \to \mathsf{Idl}(\mathcal{B})$  is the principal ideal embedding.

# Representing Boolean algebras as spaces of models 2

#### Corollary

 $\mathcal{B}$  can be recovered as the compact elements of  $\mathcal{O}(X_{\mathcal{B}})$ , i.e. as the compact open subsets of  $X_{\mathcal{B}}$ .

Since  $X_{\mathcal{B}}$  is Stone, in particular compact and Hausdorff, that means

#### Corollary

 $\mathcal{B}$  can be recovered as the lattice of clopen subsets of  $X_{\mathcal{B}}$ .

The latter can be identified with the continuous functions from  $X_B$  into the discrete (Stone) space 2,

$$CL(X_{\mathcal{B}}) \cong \operatorname{Hom}_{\operatorname{Stone}}(X_{\mathcal{B}}, 2)$$

# Stone duality

Sending a Boolean algebra to its Stone space of 'models' is (contravariantly) functorial, as is recovering a Boolean algebra as the clopens of a Stone space, and we get the familiar Stone duality:



└─ Introduction — The Setup

# Logical Duality - Table

|                          | SYNTAX                                                                                        | Intermediate                                                                                                        | SEMANTICS                                                                         |
|--------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Class.<br>Prop.<br>Logic | Boolean algebras                                                                              | Frames                                                                                                              | Stone spaces                                                                      |
|                          | $\mathcal{B}\cong L_{\mathbb{T}}$                                                             | $IdI(\mathcal{B})$                                                                                                  | $X_{\mathcal{B}}\cong \operatorname{Hom}_{\operatorname{BA}}(\mathcal{B},2)$      |
|                          | algebraic object<br>built from syntax                                                         | $\cong \mathcal{O}(X_{\mathcal{B}})$                                                                                | space of models                                                                   |
| FOL                      | Bool. coh. cats                                                                               | Тороі                                                                                                               | Top. gpds                                                                         |
|                          | $\label{eq:B} \mathcal{B} \simeq \mathcal{C}_{\mathbb{T}}$ algebraic object built from syntax | $egin{array}{c} {\sf Sh}({\mathcal B})\ \simeq\ {\sf Sh}_{{\mathcal G}_{\mathcal B}}(X_{{\mathcal B}}) \end{array}$ | $G_{\mathcal{B}}  ightarrow X_{\mathcal{B}}$ top. grpd of models and isomorphisms |

# Syntactical categories - $\mathcal{C}_{\mathbb{T}}$

For a first-order theory  $\mathbb T,$  the syntactical category  $\mathcal C_\mathbb T$  of  $\mathbb T$  has as objects formulas-in-context

 $[\vec{x} \mid \phi]$ 

of  $\mathbb T,$  with arrows classes of  $\mathbb T\text{-}\mathsf{provably}$  equivalent formulas-in-context

$$|\left[\vec{x}, \vec{y} \,|\, \sigma\right]| : \left[\vec{x} \,|\, \phi\right] \longrightarrow \left[\vec{y} \,|\, \psi\right]$$

such that  $\sigma$  is  $\mathbb{T}$ -provably a functional relation from  $\phi$  to  $\psi$ . With  $\mathbb{T}$  a classical f.o. theory,  $\mathcal{C}_{\mathbb{T}}$  is a Boolean (coherent) category (BC). Moreover, every BC is, up to equivalence, the syntactic category of a classical f.o. theory, so that BCs represent first-order logical theories.

# Models

• Ordinary set-models of  $\mathbb T$  correspond to coherent functors  $\mathcal C_{\mathbb T} \longrightarrow {\bf Sets},$ 

$$\operatorname{Mod}_{\mathbb{T}}(\operatorname{\mathsf{Sets}})\simeq\operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Coh}}}(\mathcal{C}_{\mathbb{T}},\operatorname{\mathsf{Sets}})$$

 $\mathbb{T}\text{-model}$  isomorphisms correspond to invertible natural transformations between these coherent functors. Accordingly, the *groupoid* (category with all arrows invertible) of  $\mathbb{T}\text{-models}$  and isomorphisms between them can be represented as the groupoid of coherent set-valued functors from  $\mathcal{C}_{\mathbb{T}}$  with invertible natural transformations between them:

• In order to have sets of models and isomorphisms, lets say  $\mathbb{T}$  (and  $\mathcal{C}_{\mathbb{T}}$ ) is countable, and we only consider the countable models, i.e. those functors that take values in countable sets.

# Semantical groupoids

• For a countable Boolean coherent category  $\mathcal{B}$ , then, we consider the groupoid



of countable 'models' (coherent functors) and isomorphisms between them.

 We equip the sets X<sub>B</sub> and G<sub>B</sub> with topologies to make this a topological groupoid.

## The topology on $X_{\mathcal{B}}$

#### Definition

The *coherent topology* on  $X_{\mathcal{B}}$  is the coarsest containing all sets of the form

$$\{M \in X_{\mathcal{B}} \mid \exists x \in M(A). M(f_1)(x) = b_1 \land \ldots M(f_n)(x) = b_n\}$$

given by a finite span in  $\mathcal{B}$ ,



and a list  $b_1, \ldots, b_n \in \mathbf{Sets}_c$ .

# The topology on $G_B$

#### Definition

The coherent topology on  $G_{\mathcal{B}}$  is the coarsest such that the source and target maps  $G_{\mathcal{B}} \rightrightarrows X_{\mathcal{B}}$  are both continuous, and containing all sets of the form

$$U_{A,a\mapsto b} = \{f: M \to N \mid a \in M(A) \land f_A(a) = b\}$$

given by an object A in  $\mathcal{B}$  and  $a, b \in \mathbf{Sets}_c$ .

Sheaves: Sh(X)

For a space X, the topos of sheaves on X

### Sh(X)

consists of local homeomorphisms over X



If X is the space of objects of a topological groupoid:

$$G \xrightarrow{s}_{t} X$$

the topos of equivariant sheaves,  $Sh_G(X)$ , is constructed by equipping sheaves on X with an action by G.

### Equivariant sheaves: $Sh_G(X)$

 $\operatorname{Sh}_G(X)$  has as objects pairs  $\langle a : A \to X, \alpha \rangle$  where the first component is an element of  $\operatorname{Sh}(X)$  and the second component is a continuous action

$$G \times_X A \xrightarrow{\alpha} A$$

$$\langle g: y \to z, d \rangle \quad \mapsto \quad \alpha(g, d)$$

An arrow between objects  $\langle a : A \to X, \alpha \rangle$  and  $\langle b : B \to X, \beta \rangle$  is an arrow  $f : A \to B$  of Sh(X) which commutes with the actions:



### The topos of coherent sheaves

For a coherent category C, the *topos of coherent sheaves*—i.e. sheaves for the coherent, or finite epimorphic families, coverage—Sh(C) is the 'free topos on C', in the sense that coherent functors from C into a topos  $\mathcal{E}$  correspond to geometric morphisms from  $\mathcal{E}$  to Sh(C):



C can be recovered, up to pretopos completion, from Sh(C) as the *coherent* objects, or, if C is Boolean, as the compact decidable objects.

└─ Introduction — The Setup

# Logical Duality - Table

|                          | SYNTAX                                       | Intermediate                                                         | SEMANTICS                                                                    |
|--------------------------|----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| Class.<br>Prop.<br>Logic | Boolean algebras                             | Frames                                                               | Stone spaces                                                                 |
|                          | $\mathcal{B}\cong L_{\mathbb{T}}$            | $IdI\left(\mathcal{B}\right)$                                        | $X_{\mathcal{B}}\cong \operatorname{Hom}_{\operatorname{BA}}(\mathcal{B},2)$ |
|                          | algebraic object<br>built from syntax        | $\cong \mathcal{O}(X_{\mathcal{B}})$                                 | space of models                                                              |
| FOL                      | Bool. cats                                   | Тороі                                                                | Top. gpds                                                                    |
|                          | $\mathcal{B}\simeq \mathcal{C}_{\mathbb{T}}$ | $Sh(\mathcal{B})$                                                    | $G_{\mathcal{B}} \rightrightarrows X_{\mathcal{B}}$                          |
|                          | algebraic object<br>built from syntax        | $\stackrel{\simeq}{Sh}_{\mathcal{G}_{\mathcal{B}}}(X_{\mathcal{B}})$ | models and<br>isomorphisms                                                   |

#### Stone representation theorem

The Stone representation theorem says that a Boolean algebra can be embedded in the lattice of subsets of a set

$$\mathcal{B} \hookrightarrow \mathcal{P}(X_{\mathcal{B}})$$

By equipping that set with a topology, on can recover  ${\cal B}$  as the compact open sets.

Generalizing, we show that a (countable) Boolean category can be 'embedded' in the topos of sets over a set

$$\mathcal{B} \hookrightarrow \mathbf{Sets} / X_{\mathcal{B}}$$

By equipping that set with a topology and introducing continuous actions, on can recover  $\mathcal{B}$  as the compact decidable objects.

### Analogue to the Stone representation THM

For an object A in  $\mathcal{B}$  we have the set  $E_A$  over  $X_{\mathcal{B}}$  whose fiber over  $M \in X_{\mathcal{B}}$  is M(A):

$$E_{A} = \{ \langle M, d \rangle \mid M \in X_{\mathcal{B}} \land d \in M(A) \} \xrightarrow{\pi_{1}} X_{\mathcal{B}}$$

Which gives the assignment:



# Embedding $\mathcal{B}$

This defines a coherent functor

$$\mathcal{M}_d: \mathcal{B} \longrightarrow \mathbf{Sets}/X_{\mathcal{B}}$$

which is **faithful** and **cover reflecting**. By equipping  $X_{\mathcal{B}}$  with the coherent topology, and then introducing continuous  $G_{\mathcal{B}}$ -actions, we make the objects in the image of  $\mathcal{M}_d$  compact and generating, and the embedding full. That is, we factor  $\mathcal{M}_d$ :



#### Representation Theorem

Verifying that

- the set  $\{\mathcal{M}^{\dagger}(A) \mid A \in \mathcal{B}\}$  is a generating set for  $Sh_{\mathcal{G}_{\mathcal{B}}}(X_{\mathcal{B}})$ ;
- 2  $\mathcal{M}^{\dagger}$  if full and faithful; and
- $\textbf{0} \ \mathcal{M}^{\dagger} \text{ reflects covers.}$

we get that  $\mathcal{B} \simeq \mathcal{M}^{\dagger}(\mathcal{B})$  is a site for  $Sh_{\mathcal{G}_{\mathcal{B}}}(X_{\mathcal{B}})$ , and thus that the induced geometric morphism



is an equivalence.

### Representation theorem

Theorem For any (countable) Boolean coherent category  $\mathcal{B}$ ,

 $\mathsf{Sh}(\mathcal{B})\simeq\mathsf{Sh}_{\mathcal{G}_{\mathcal{B}}}(X_{\mathcal{B}})$ 

where  $G_{\mathcal{B}} \rightrightarrows X_{\mathcal{B}}$  is the groupoid of countable models and isomorphisms, equipped with the coherent topologies.

#### Corollary

A (countable) Boolean coherent category,  $\mathcal{B}$ , is equivalent to the full subcategory of compact decidable objects in  $Sh_{G_{\mathcal{B}}}(X_{\mathcal{B}})$  up to pretopos completion. So that if  $\mathcal{B}$  is a pretopos, then it is equivalent to the subcategory of compact decidable objects.

### Syntax-semantics adjunction

Sending a BC to its semantical groupoid is functorial

 $\mathcal{G}: \textbf{BC}_{\textbf{c}}^{\operatorname{op}} \longrightarrow \textbf{Gpd}$ 

- By restricting to a subcategory of the category Gpd of topological groupoids, we can find an adjoint.
- One way of doing this is to restrict to the category
   BoolGpd → Gpd of topological groupoids G ⇒ X such that Sh<sub>G</sub>(X) has a Boolean coherent site, and morphisms between them that preserve compact (decidable) objects. Then taking the compact decidable objects in Sh<sub>G</sub>(X) extracts a Boolean coherent category,

$$\mathcal{B}_{G \rightrightarrows X} \hookrightarrow \mathrm{Sh}_G(X)$$

#### Syntax-Semantics Duality

## Syntax-Semantics adjunction

There is a groupoid S—it's the groupoid of models of the theory of equality—such that morphisms from  $G \rightrightarrows X$  to S in **BoolGpd** corresponds to compact decidable objects in  $Sh_G(X)$ . So 'homming into S' gives a 'syntactical' functor extracting Boolean coherent categories from groupoids:

#### Theorem

The 'semantical' functor is (right) adjoint to the 'syntactical' functor ,



Counit components are equivalences at pretopoi.