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Algebra-geometry, syntax-semantics

1 Stone duality—the fact that the ‘algebraic’ category of
Boolean algebras is dual to the ‘geometric’ category of Stone
spaces

BAop ' Stone

has a logical interpretation as a syntax-semantics duality for
classical propositional logic.

2 We present a generalization to first-order logic, which yields
the propositional logical Stone duality as a special case.



First-Order Logical Duality

Introduction Overview 3/25

Table of Contents

1 Introduction

Stone duality—the propositional case
Logical duality—the setup

2 Representation Theorem

Outline of main representation result

3 Syntax-Semantics Duality

The full text can be downloaded from
http://folk.uio.no/jonf/



First-Order Logical Duality

Introduction Stone Duality—The Propositional Case 4/25

Logical interpretation - algebras
A propositional theory, T can be seen as a Boolean algebra.

Definition
For a propositional theory T, the Lindenbaum-Tarski algebra, LT of
T consists of equivalence classes [φ] of formulas, where

φ ∼ ψ ⇔ T ` φ↔ ψ,

ordered by provability:

[φ] ≤ [ψ]⇔ T ` φ→ ψ.

The Lindebaum-Tarski (LT) algebra of a propositional theory is a
Boolean algebra. Conversely, any Boolean algebra is the
LT-algebra of a classical propositional theory

B ∼= LTB .
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Logical interpretation - Stone spaces
For a propositional theory T, a (2-valued) model is an assignment
of formulas to the values 1 (true) and 0 (false) which preserves
provability, and so can be considered to be a morphism of Boolean
algebras

LT // 2.

Conversely, such a morphism can be seen as a model of T.
Alternatively, these morphisms can be seen as ultra-filters of LT.
Therefore, the Stone space corresponding to LT can be presented
as the set of ‘models’

XLT := HomBA (LT, 2)

equipped with the ‘logical’ topology defined by basic opens

Uφ = {M � T M � φ}

for φ a formula of T.
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Representing Boolean algebras as spaces of models 1

A Boolean algebra B can be recovered from its Stone space of
models (or ultra-filters) XB. E.g. as follows.
The map U : B → O(XB) defined by b 7→ {f ∈ XB f (b) = 1}
lifts to an isomorphism of frames Û,

Idl (B) O(XB)
Û //Idl (B)

B

OO

P

O(XB)

B

88

Urrrrrrrrrrr
Idl (B) O(XB)∼=

//Idl (B)

B

OO
O(XB)

B

88

rrrrrrrrrrr

where

Idl (B) is the ideal completion of B;

P : B → Idl (B) is the principal ideal embedding.
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Representing Boolean algebras as spaces of models 2

Corollary

B can be recovered as the compact elements of O(XB), i.e. as the
compact open subsets of XB.

Since XB is Stone, in particular compact and Hausdorff, that means

Corollary

B can be recovered as the lattice of clopen subsets of XB.

The latter can be identified with the continuous functions from XB
into the discrete (Stone) space 2,

CL(XB) ∼= HomStone (XB, 2)
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Stone duality

Sending a Boolean algebra to its Stone space of ‘models’ is
(contravariantly) functorial, as is recovering a Boolean algebra as
the clopens of a Stone space, and we get the familiar Stone duality:

BAop Stone

HomBA(−,2)

33BAop Stone
ss

HomStone(−,2)

'
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Logical Duality - Table

SYNTAX Intermediate SEMANTICS

Class.
Prop.
Logic

Boolean algebras Frames Stone spaces

B ∼= LT Idl (B)
∼=
O(XB)

XB ∼= HomBA (B, 2)

algebraic object
built from syntax

space of models

FOL

Bool. coh. cats Topoi Top. gpds

B ' CT Sh(B)
'
ShGB(XB)

GB ⇒ XB

algebraic object
built from syntax

top. grpd of
models and
isomorphisms
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Syntactical categories - CT

For a first-order theory T, the syntactical category CT of T has as
objects formulas-in-context

[~x φ]

of T, with arrows classes of T-provably equivalent
formulas-in-context

| [~x , ~y σ] | : [~x φ] // [~y ψ]

such that σ is T-provably a functional relation from φ to ψ. With
T a classical f.o. theory, CT is a Boolean (coherent) category (BC).
Moreover, every BC is, up to equivalence, the syntactic category of
a classical f.o. theory, so that BCs represent first-order logical
theories.
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Models

Ordinary set-models of T correspond to coherent functors
CT // Sets,

ModT(Sets) ' HomCoh (CT,Sets)

T-model isomorphisms correspond to invertible natural
transformations between these coherent functors. Accordingly,
the groupoid (category with all arrows invertible) of T-models
and isomorphisms between them can be represented as the
groupoid of coherent set-valued functors from CT with
invertible natural transformations between them:

In order to have sets of models and isomorphisms, lets say T
(and CT) is countable, and we only consider the countable
models, i.e. those functors that take values in countable sets.
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Semantical groupoids

For a countable Boolean coherent category B, then, we
consider the groupoid

GB ×XB GB GB
c // GB XB

s //
GB XBoo IdGB XB

t
//GB

i

��

of countable ‘models’ (coherent functors) and isomorphisms
between them.

We equip the sets XB and GB with topologies to make this a
topological groupoid.
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The topology on XB

Definition
The coherent topology on XB is the coarsest containing all sets of
the form

{M ∈ XB ∃x ∈ M(A).M(f1)(x) = b1 ∧ . . .M(fn)(x) = bn}

given by a finite span in B,

B1 Bi

A

B1

f1

����
��

��
�
A

Bi

fi
��

. . . Bi Bn

A

Bi

��

A

Bn

fn

��?
??

??
??

. . .

and a list b1, . . . , bn ∈ Setsc .
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The topology on GB

Definition
The coherent topology on GB is the coarsest such that the source
and target maps GB ⇒ XB are both continuous, and containing all
sets of the form

UA,a 7→b = {f : M → N a ∈ M(A) ∧ fA(a) = b}

given by an object A in B and a, b ∈ Setsc .
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Sheaves: Sh (X )
For a space X , the topos of sheaves on X

Sh (X )

consists of local homeomorphisms over X

A

X
a %%KKK
KKK

KKA B
f // B

X
byysssssss

If X is the space of objects of a topological groupoid:

G
s //
t

// X

the topos of equivariant sheaves, ShG (X ), is constructed by
equipping sheaves on X with an action by G .
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Equivariant sheaves: ShG (X )
ShG (X ) has as objects pairs 〈a : A→ X , α〉 where the first
component is an element of Sh (X ) and the second component is a
continuous action

G ×X A A
α //

〈g : y → z , d〉 7→ α(g , d)

An arrow between objects 〈a : A→ X , α〉 and 〈b : B → X , β〉 is an
arrow f : A→ B of Sh (X ) which commutes with the actions:

A B
f

//

G ×X A

A

α ��

G ×X A G ×X B
1G×f // G ×X B

B

β��
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The topos of coherent sheaves

For a coherent category C, the topos of coherent sheaves—i.e.
sheaves for the coherent, or finite epimorphic families,
coverage—Sh(C) is the ‘free topos on C’, in the sense that
coherent functors from C into a topos E correspond to geometric
morphisms from E to Sh(C):

Sh(C) E
f ∗

44Sh(C)

C

OO

y

E

C

99

F

rrrrrrrrrrrrrrrrr>Sh(C) Err
f∗

Sh(C)

C

OO

y

E

C

99

F

rrrrrrrrrrrrrrrrr

C can be recovered, up to pretopos completion, from Sh(C) as the
coherent objects, or, if C is Boolean, as the compact decidable
objects.
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Logical Duality - Table

SYNTAX Intermediate SEMANTICS

Class.
Prop.
Logic

Boolean algebras Frames Stone spaces

B ∼= LT Idl (B)
∼=
O(XB)

XB ∼= HomBA (B, 2)

algebraic object
built from syntax

space of models

FOL

Bool. cats Topoi Top. gpds

B ' CT Sh(B)
'
ShGB(XB)

GB ⇒ XB

algebraic object
built from syntax

top. grpd of
models and
isomorphisms
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Stone representation theorem

1 The Stone representation theorem says that a Boolean algebra
can be embedded in the lattice of subsets of a set

B � � // P(XB)

By equipping that set with a topology, on can recover B as
the compact open sets.

2 Generalizing, we show that a (countable) Boolean category
can be ‘embedded’ in the topos of sets over a set

B � � // Sets/XB

By equipping that set with a topology and introducing
continuous actions, on can recover B as the compact
decidable objects.
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Analogue to the Stone representation THM

For an object A in B we have the set EA over XB whose fiber over
M ∈ XB is M(A):

EA = {〈M, d〉 M ∈ XB ∧ d ∈ M(A)} π1 // XB

Which gives the assignment:

B Sets/XB Fiber over M ∈ XB

A B
f // EA

XB
��?

??
?EA EB

Ef // EB

XB
����

��
M(A)

M
��?

???
M(A) M(B)

M(f ) // M(B)

M
�����

�
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Embedding B
This defines a coherent functor

Md : B // Sets/XB

which is faithful and cover reflecting. By equipping XB with the
coherent topology, and then introducing continuous GB-actions, we
make the objects in the image of Md compact and generating,
and the embedding full. That is, we factor Md :

B Sh (XB)
M //B

ShGB(XB)
M† ))RRRRRRRRRRRR Sh (XB)

ShGB(XB)

OO
u∗

B Sh (XB)//

Sets/XB

B

55
Md

llllllllllll
Sets/XB

Sh (XB)

OO
u∗

forgetful

forgetful
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M† : B // ShGB(XB) continued
Verifying that

1 the set
{
M†(A) A ∈ B

}
is a generating set for ShGB(XB);

2 M† if full and faithful; and

3 M† reflects covers.

we get that B 'M†(B) is a site for ShGB(XB), and thus that the
induced geometric morphism

Sh(B) ShGB(XB)

(m†)∗
11Sh(B)

B

OO

y

ShGB(XB)

B

77

M†

ooooooooooooooooooo
>Sh(B) ShGB(XB)

rr
(m†)∗

Sh(B)

B

OO

y

ShGB(XB)

B

77

M†

ooooooooooooooooooo

is an equivalence.
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Representation theorem

Theorem
For any (countable) Boolean coherent category B,

Sh(B) ' ShGB(XB)

where GB ⇒ XB is the groupoid of countable models and
isomorphisms, equipped with the coherent topologies.

Corollary

A (countable) Boolean coherent category, B, is equivalent to the
full subcategory of compact decidable objects in ShGB(XB) up to
pretopos completion. So that if B is a pretopos, then it is
equivalent to the subcategory of compact decidable objects.
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Syntax-semantics adjunction

1 Sending a BC to its semantical groupoid is functorial

G : BCc
op // Gpd

2 By restricting to a subcategory of the category Gpd of
topological groupoids, we can find an adjoint.

3 One way of doing this is to restrict to the category
BoolGpd � � // Gpd of topological groupoids G ⇒ X such
that ShG (X ) has a Boolean coherent site, and morphisms
between them that preserve compact (decidable) objects.
Then taking the compact decidable objects in ShG (X )
extracts a Boolean coherent category,

BG⇒X
� � // ShG (X )
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Syntax-Semantics adjunction

There is a groupoid S—it’s the groupoid of models of the theory of
equality—such that morphisms from G ⇒ X to S in BoolGpd
corresponds to compact decidable objects in ShG (X ). So
‘homming into S’ gives a ‘syntactical’ functor extracting Boolean
coherent categories from groupoids:

Theorem
The ‘semantical’ functor is (right) adjoint to the ‘syntactical’
functor ,

BCc
op BoolGpd

G=HomBCc (−,Setsc )

22BCc
op BoolGpd

rr
Θ=HomBoolGpd(−,S)

⊥

Counit components are equivalences at pretopoi.
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