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Grounds

Definition
A transitive model M is a ground if it is a model of ZFC and there is a
partial order P ∈ M and an M-generic filter G ⊆ P such that V = M[G].

Theorem (Laver)
If M is a ground, then M is a definable inner model.

More precisely:

Theorem (Hamkins)
There is a formula ϕ(x , y) such that whenever M is a ground of V, and

M[G] = V, where G ⊆ P ∈ M is P-generic, then, letting θ = P
+

,

M = {x | ϕ(x ,P(θ) ∩M)}.
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Applications

Lemma (Reitz)
The Ground Axiom, expressing that the universe has no non-trivial
ground, is first order expressible.

I have also made use of extensions of the uniform definability of
grounds, in the context of maximality principles.
Some more applications are coming up, after motivating them.
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Motivation

Turn around the common direction of movement from grounds to
forcing extensions.

Strip away “random” information that was added by forcing.
Find “canonical” models invariant for the forcing multiverse.
This is a new view of things, and there are many fundamental
open questions!
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The Mantle

Definition
The Mantle M is the intersection of all grounds.

This mere definition is already an application of the uniform definability
of grounds: The Mantle is a first order definable transitive class.
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A Question

Question
Is M a model of ZF? Of ZFC?
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Directedness

Definition
The grounds are directed if whenever M and N are grounds, there is a
ground C with C ⊆ M ∩ N.

The grounds are set-directed if whenever (Wx | x ∈ a) is a sequence of
grounds, indexed by members of a set a, then there is a ground C with

C ⊆
⋂
x∈a

Wx .

The grounds are locally set-directed if for every such sequence and
every set A, there is a ground C such that

A ∩ C ⊆ A ∩
⋂
x∈a

Wx .
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A Criterion

Lemma
If the grounds are locally set-directed, then the Mantle is a model of
ZFC.

Question
Are the grounds directed? Set-directed? Locally set-directed?

Some partial answers will come later...
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More Models

Definition
The generic Mantle, gM, is the intersection of all grounds of all forcing
extensions.

Note: It follows that
gM =

⋂
α<∞

MVCol(ω,α)

So the more formal definition would be:

gM = {x | ∀α Col(ω, α)  x̌ ∈M}.

We came up with this model because...
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Theorem

gM |= ZF

The point is that gM is the same in every ground of every forcing
extension of V.
In fact,

Theorem
The generic mantle is constant across the forcing multiverse.
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Even more Models

Definition
The generic HOD, gHOD, is the intersection of all HODs of all generic
extensions.

It follows that
gHOD =

⋂
α<∞

HODVCol(ω,α)

I introduced this model in connection with research on closed
maximality principles. The point is:

Theorem (F.)

gHOD |= ZFC.

The reason is that the family of models 〈HODVCol(ω,α)

| α <∞〉 is a
set-directed metaclass of models of ZFC. Again, gHOD is constant
across the forcing multiverse.
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A Question

Question
What is the relationship between M, gM and gHOD?
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Some answers

Lemma

gHOD ⊆ gM ⊆M,

and
gHOD ⊆ HOD.

It is trivial that gHOD ⊆ HOD and that gM ⊆M, so the only inclusion of
substance is that gHOD ⊆ gM.
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gHOD ⊆ gM

Let V′ = W [g] = V[h], for g generic over W and h generic over V.
In other words, W is a generic ground.

Let θ be larger than the size of the forcings leading from W to V′

and from V to V′.
Let I be Col(ω, θ)-generic over V′. Then there is g′

Col(ω, θ)-generic over W and h′ Col(ω, θ)-generic over V, such
that

W [g′] = W [g][I] = V′[I] = V[h][I] = V[h′].

By the homogeneity of the collapse, it follows that

HODV′[I] = HODW [g′] ⊆W .

So gHOD =
⋂
α<∞ HODVCol(ω,α)

⊆ gM, as claimed.
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When V is constructible from a set

Theorem
If the universe is constructible from a set, then the grounds are
set-directed, so the Mantle is a model of ZFC.

Theorem
If the universe is constructible from a set, then

gHOD = gM = M.
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More answers

As a reminder: In general,

gHOD ⊆ gM ⊆M,and gHOD ⊆ HOD.

Theorem
Fix a model V of ZFC. Then V has proper class forcing extensions N0,
N1, N2, N3 such that:

V = gHODN0 = gMN0 = MN0 = HODN0 $ N0.

V = gHODN1 = gMN1 = MN1 $ HODN1 = N1.

V = gHODN2 = HODN2 $ MN2 = N2.

V $ gHODN3 = gMN3 = MN3 = HODN3 = N3.
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V = gHODN0 = gMN0 = MN0 = HODN0 $ N0

Let δα = i+
ω(α+1).

Force with P =
∏
α<∞ Qα, (with set support) where Qα is the

lottery sum of:
a forcing that forces GCH at δα, namely Add(δ+

α ,1), or
a forcing that destroys the GCH at δα, namely Add(δα, (2<δα)++).

Let G be P-generic, and let N0 = V[G].
A density argument shows that in the forcing extension, every set
of V is coded into the GCH-pattern, and hence is in HODV[G].
In fact, the same argument shows that P forces that every set of V
is coded in the GCH-pattern unboundedly often, so that
V ⊆ gHODV[G].
So far we know that V ⊆ gHODV[G] ⊆ gMV[G] ⊆MV[G], and that
V ⊆ HODV[G].
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MV[G] ⊆ V

Let x ∈MV[G]. x = τG for a name τ which is a set, so x ∈ V[Gα],
for some α.
V[G] = V[Gα][Gα], where Gα is Pα-generic, which is a set sized
forcing. So V[Gα] is a ground of V[G].
So MV[G] ⊆ V[Gα].
So x ∈ V[Gα] ∩ V[Gα].
But these are mutually generic filters, so x ∈ V.

G. Fuchs et al. (Münster/New York) Set Theoretic Geology LC 2008 18 / 22



MV[G] ⊆ V

Let x ∈MV[G]. x = τG for a name τ which is a set, so x ∈ V[Gα],
for some α.

V[G] = V[Gα][Gα], where Gα is Pα-generic, which is a set sized
forcing. So V[Gα] is a ground of V[G].
So MV[G] ⊆ V[Gα].
So x ∈ V[Gα] ∩ V[Gα].
But these are mutually generic filters, so x ∈ V.

G. Fuchs et al. (Münster/New York) Set Theoretic Geology LC 2008 18 / 22



MV[G] ⊆ V

Let x ∈MV[G]. x = τG for a name τ which is a set, so x ∈ V[Gα],
for some α.
V[G] = V[Gα][Gα], where Gα is Pα-generic, which is a set sized
forcing. So V[Gα] is a ground of V[G].

So MV[G] ⊆ V[Gα].
So x ∈ V[Gα] ∩ V[Gα].
But these are mutually generic filters, so x ∈ V.

G. Fuchs et al. (Münster/New York) Set Theoretic Geology LC 2008 18 / 22



MV[G] ⊆ V

Let x ∈MV[G]. x = τG for a name τ which is a set, so x ∈ V[Gα],
for some α.
V[G] = V[Gα][Gα], where Gα is Pα-generic, which is a set sized
forcing. So V[Gα] is a ground of V[G].
So MV[G] ⊆ V[Gα].

So x ∈ V[Gα] ∩ V[Gα].
But these are mutually generic filters, so x ∈ V.

G. Fuchs et al. (Münster/New York) Set Theoretic Geology LC 2008 18 / 22



MV[G] ⊆ V

Let x ∈MV[G]. x = τG for a name τ which is a set, so x ∈ V[Gα],
for some α.
V[G] = V[Gα][Gα], where Gα is Pα-generic, which is a set sized
forcing. So V[Gα] is a ground of V[G].
So MV[G] ⊆ V[Gα].
So x ∈ V[Gα] ∩ V[Gα].

But these are mutually generic filters, so x ∈ V.

G. Fuchs et al. (Münster/New York) Set Theoretic Geology LC 2008 18 / 22



MV[G] ⊆ V

Let x ∈MV[G]. x = τG for a name τ which is a set, so x ∈ V[Gα],
for some α.
V[G] = V[Gα][Gα], where Gα is Pα-generic, which is a set sized
forcing. So V[Gα] is a ground of V[G].
So MV[G] ⊆ V[Gα].
So x ∈ V[Gα] ∩ V[Gα].
But these are mutually generic filters, so x ∈ V.

G. Fuchs et al. (Münster/New York) Set Theoretic Geology LC 2008 18 / 22



HODV[G] ⊆ V

Fix α <∞.

Pα is not weakly homogeneous.
But it is “densely weakly homogeneous”, in the sense that the set
of p ∈ Pα such that Pα(≤ p) is weakly homogeneous is dense in
Pα.
So HODV[G] = HODV[Gα][Gα] ⊆ V[Gα].
This is true for every α.
But we have already seen in the previous argument that⋂
α<∞ V[Gα] = V.
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V = gHODN1 = gMN1 = MN1 $ HODN1 = N1.

The difference here is that we have to make the HOD big while
keeping the other models small. To achieve that, we use products of
self-encoding forcings.

Let κα = λ+, where λ is the αth fixed point of the i function.
Let Qα be the self-encoding forcing at κα.
Let P =

∏
α<∞ Pα, with set support.

Let G be P-generic, and let N1 = V[G].

By the coding we used, it follows that V[G] = HODV[G].
Also, every member of V is coded in the continuum function
unboundedly often, so that V ⊆ gHODV[G].
So far, we have:

V ⊆ gHODV[G] ⊆ gMV[G] ⊆MV[G],and V[G] = HODV[G].
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MN1 ⊆ V

By the product analysis: Every V[Gα] is a ground of N1.
So MN1 ⊆

⋂
α<∞ V[Gα] = V.
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Still more Questions

Question
Is gM = M?

(If so, in particular, M |= ZF.)
What is gMN2?
Is it geology or archeology?
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