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Computational content

Proof mining is concerned with extracting the computational
content of theorems and proofs.

Every true statement ∀x ∈ N∃y ∈ NAqf (x , y) with Aqf decidable
has a trivial computational interpretation: For a given x ∈ N, find
y by unbounded search.

Better: Functional interpretations allow one to obtain for proofs in
e.g. Peano arithmetic a closed term t in Gödel’s T that witnesses
the theorem, i.e.∀x ∈ NAqf (x , tx).
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Computational content

Combining functional interpretations with majorization, one
obtains monotone functional interpretations and may extract
(uniform) bounds instead of realizers:

∀x ∈ N∀y ≤ sx∃z ≤ txAqf (x , y , z).

With monotone functional interpretations we may treat principles
that admit no computable realizers but admit computable bounds,
such as weak König’s Lemma.

These results extend to many formal systems based on Peano
arithmetic, even interpreting e.g. dependent choice.
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Computational content of ∀∃∀-statements

Example: Let (xn)n∈N be a sequence of real numbers, then

∀k∃n∀m > n(|xn − xm| ≤ 2−k),

expresses the (Cauchy) convergence of (xn)n∈N.

Problem: We can construct bounded monotone sequences of
rationals – so-called Specker sequences – where there exists no
computable rate of convergence, i.e. no bounds on ∃n.
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Computational content of ∀∃∀-statements

On the other hand,

∀k∃n∀m > n(|xn − xm| ≤ 2−k),

is classically equivalent to

∀k∀M : N → N∃n(M(n) > n → |xn − xM(n)| ≤ 2−k).

This statement is constructively weaker and a ∀∃-statement.

This is the ’Dialectica’ transform of the negative translation of the
full convergence statement. For ∀∃∀-statements, this is known as
the no-counterexample interpretation.
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Applications of no-counterexample weakenings

In this talk, I want to discuss two applications of this weakened
form of ∀∃∀-statements:

I Establishing infinitary statements (∀∃∀-statements) by
establishing their (classically equivalent, constructively
weaker) no-counterexample interpretation.

I Computational interpretation (using Gödel’s Dialectica
interpretation) of ∀∃∀-lemmas in proofs of ∀∃-theorems.
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Principle of convergence for bounded monotone sequences

The principle of convergence for bounded monotone sequences,
PCM, is the following statement:

∀(xn)n∈N(∀i(xi ≤ xi+1 ≤ b) →
∀k∃n∀m > n(|xn − xm| ≤ 2−k)),

where (xn)n∈N is a sequence of real numbers.

We write PCM(an) for the instantiation of PCM with a particular
sequence (an)n∈N.

Philipp Gerhardy Functional interpretation and the finite convergence principle



Introduction
The Finite Convergence Principle

The Finite Convergence Principle as a Lemma
Proof-theoretic Results and an Example

Conclusions and Future Work

Principle of convergence for bounded monotone sequences

We may not be able to compute a bound for ∃n, even for a
computable sequence (an)n∈N, e.g. Specker sequences.

But: One easily computes bounds for the (classically equivalent)
no-counterexample version of PCM:

∀(xn)n∈N(∀i(xi ≤ xi+1 ≤ b) →
∀k∀M∃n(M(n) > n → |xn − xM(n)| ≤ 2−k)).

We call this constructively weaker form PCM−. T.Tao has dubbed
this the “finite convergence principle”.
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Combinatorial proofs of infinitary statements
While a full convergence statement is an infinitary statement, the
no-counterexample is a finitary, combinatorial statement.

T.Tao recently established the following theorem:

Theorem (T.Tao)

Let l ≥ 1 be an integer. Assume that T1, . . . Tl : X → X are
commuting invertible measure-preserving transformations of a
measure space (X , χ, µ). Then for any f1, . . . , fl ∈ L∞(X , χ, µ),
the averages

1

N

N−1∑
n=0

f1(T
n
1 x) . . . fl(T

n
l x)

are convergent in L2(X , χ, µ).
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Combinatorial proofs of infinitary statements

This theorem was established by proving the following:

Theorem (T.Tao)

Let l ≥ 1 be an integer, let F : N → N be a function and let ε > 0.
Then there exists an integer M∗ > 0 with the following property: If
P ≥ 1 and f1, . . . , fl : Zl

P → [0, 1] are arbitrary functions on Zl
P ,

then there exists an integer 1 ≤ M ≤ M∗ such that we have “L2

metastability”

‖AN(f1, . . . , fl)− AN′(f1, . . . , fl)‖L2(Zl
P) ≤ ε

for all M ≤ N,N ′ ≤ F (M) where we give Zl
P the uniform

probability measure.

This theorem has an essentially combinatorial constructive proof.
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Conclusions so far

I The no-counterexample interpretation (negative translation +
Dialectica) is an approximation to the computational content
of a (classically provable) ∀∃∀-statement.

I The no-counterexample interpretation may have a simpler,
more direct proof than the original infinitary statement.

I We may consider the no-counterexample interpretation to
establish the truth of the infinitary (∀∃∀-)statement.
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∀∃∀-statements as lemmas

Let A ≡ ∀x∃y∀zP(x , y , z) and B ≡ ∀u∃vQ(u, v) with P,Q
decidable and all variables ranging over N.

Assume A is a lemma in a (classical) proof of B, i.e. we have a
proofs of A and A → B and the final proof step

A A → B

B
.

How do we interpret this proof using Gödel’s (’Dialectica’)
functional interpretation (combined with negative translation)?
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∀∃∀-statements as lemmas

The Dialectica transform of the negative translation of A is just
the no-counterexample version A− ≡ ∀x ,Z∃yP(x , y ,Z (y)).

Using negative translation and functional interpretation the proof
of A is transformed into a (constructive) proof of A−.

This is in our favour as proofs/realizers of the no-counterexample
version of ∀∃∀-statements are often simpler.
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∀∃∀-statements as lemmas

Informally, the proof of A → B is transformed into a (constructive)
proof of A− → B; this is a proof of B from a weaker premise A−,
but soundness of negative translation and functional interpretation
guarantees that it can be done.

Combining the realizers for the proofs of A− and A− → B, we get
realizers for B, i.e. a computable term tv such that ∀uQ(u, tvu)
holds (similarly for bounds).
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Proof theory vs. mathematical reality

What is the normal use of ∀∃∀-lemmas, e.g. of PCM(an) for some
bounded monotone sequence (an)n∈N?

Normal use: “Let ε > 0 be given, choose n ∈ N s.t.
|an − am| ≤ ε/4 for all m ≥ n . . . [use this n later in the proof].”

In “ordinary mathematics”, when using e.g. PCM as a lemma
there is often an implicit appeal to the axiom of choice (for
arithmetical formulas).
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Proof theory vs. mathematical reality

Arithmetical choice is used to derive PCM ⇒ PCM+, where
PCM+ is

∀(xn)n∈N(∀i(xi ≤ xi+1 ≤ b) →
∃h∀k∀m > h(k)(|xh(k) − xm| ≤ 2−k)).

Interpreting PCM+ (and ACar ) requires bar-recursion; for the
interpretation of PCM− a primitive recursive (in the sense of
Kleene) realizer suffices.

Question: Can we eliminate this appeal to the axiom of choice?
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Eliminating certain instances of choice

We can eliminate certain instances of arithmetical choice (like
PCM ⇒ PCM+) without causing additional growth, i.e. without
resorting to bar-recursion.

Informal idea:

I Given (an)n∈N and k, we ask for an n s.t. |an − am| ≤ 2−k for
all m ≥ n (using PCM+).

I Looking at the proof, we find we only use particular m, e.g.
m = n + 1000 or all m ∈ [n, n2] or some m definable in the
other parameters and then PCM− suffices.

Crucial that PCM+ is used for a sequence (an)n∈N given in the
other parameters of the theorem.
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Definitions

I The finite types T are:

(i)N ∈ T, (ii)ρ, τ ∈ T ⇒ ρ → τ ∈ T.

I For n ∈ N, GnA
ω is the subsystem of arithmetic in all finite

types where the growth of the definable functions corresponds
to the n-th level of the Grzegorzyk hierarchy.

I A formula ∀x∃y∀zAqf (x , y , z) is monotone if

x ′ ≤ x ∧ y ≤ y ′ ∧ z ′ ≤ z ∧ Aqf (x , y , z) ⇒ Aqf (x
′, y ′, z ′).

We write 0 for the type N and 1 for N → N.
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U.Kohlenbach, “ Elimination of Skolem Functions for
Monotone Formulas in Analysis”(1998)

Theorem
Let ∀x0∃y0∀z0Aqf (u

1, v τ , qx , y , z) be provably monotone in
GnA

ω + QF-AC, then the following rule holds:

GnA
ω + QF-AC ` ∀u1∀v ≤τ tu(

∃h1∀x , zAqf (u, v , x , h(x), z) → ∃w0Bqf (u, v ,w)
)

Then one can extract a term χ ∈ GnA
ω + QF-AC such that

GnA
ω
i + QF-AC ` ∀u1∀v ≤τ tu∀Ψ∗(

(Ψ∗ satisfies mFI of ∀x ,M1∃yAqf (u, v , x , y ,M(y)))
→ ∃w0 ≤ χΨ∗uBqf (u, v ,w)

)
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U.Kohlenbach, “ Elimination of Skolem Functions for
Monotone Formulas in Analysis”(1998)

Informally, in GnA
ω we can make “some” use of the function h

(modulus of convergence for PCM+), but not “too much” to
replace it with the no-counterexample version.

Due to the limited growth in GnA
ω, we can from a proof using e.g.

PCM+ read off a counterexample function M and plug this
function into PCM−.

NB: Crucial that e.g. PCM+ is used for a sequence (an)n∈N given
in the other parameters of the theorem (so that M is defined in
these parameters).
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U.Kohlenbach, “ Elimination of Skolem Functions for
Monotone Formulas in Analysis”(1998)

Principles that can be treated by this result:

I Principle of convergence for bounded monotone sequences.

I Every bounded (from above) sequence of real numbers has a
least upper bound.

I The Bolzano-Weierstrass property for bounded sequences in
Rd (for any fixed d).

I The existence of the lim sup for bounded sequences of real
numbers.
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Example: Mean Ergodic Theorem

Theorem
Let (X , 〈·, ·〉) be a Hilbert space, let T : X → X be nonexpansive

and for f ∈ X define Anf :≡ 1
n+1

n∑
i=0

T i f . Then the ergodic

averages Anf converge in the Hilbert space norm.

From a classical proof, Avigad, G and Towsner extracted bounds
for the no-counterexample version of the Mean Ergodic Theorem
of the Mean Ergodic Theorem.

Analysing the proof included treating an instance of PCM+ for a
bounded monotone sequence (an)n∈N defined in the parameters of
the theorem.
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Example: Mean Ergodic Theorem

Stripping away the details, the applications of PCM+ were:

Lemma
For all f ∈ X, nonexpansive T : X → X, ε > 0, if (an)n∈N
(definable in the parameters f , T ) converges then ∃n0Aqf (. . .).

Proof:

I Define a δ > 0 in parameters.

I By convergence of (an)n∈N, find an i s.t. |ai − aj | ≤ δ for all
j > i .

I (then in particular |ai − ai+1| ≤ δ).

I Use i to construct n0.

Observation: PCM− for M(n) = n + 1 suffices.
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Example: Mean Ergodic Theorem

Lemma
For all f ∈ X, nonexpansive T : X → X, ε > 0, if (an)n∈N
(definable in the parameters f , T ) converges then ∃n1Bqf (. . .).

Proof:

I Define a γ > 0 and γ′ > 0 in parameters.

I By convergence of (an)n∈N, find an i s.t. |ai − aj | ≤ γ for all
j > i .

I Some j > i will satisfy previous lemma for γ′.

I Use i to construct n0.

Observation: PCM− for M ′ constructible in previous M suffices.
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Further conclusions

When using ∀∃∀-statements as lemmas, we may:

I in certain cases formulate the proof with strong versions of
the lemma, e.g. PCM+, and then

I transform this proof into a constructive(!) proof using only a
weak version, e.g. PCM−, and

I thus eliminate appeals to arithmetical choice without causing
additional growth.

This has applications in proof mining of proofs in e.g. fixed point
theory and ergodic theory.
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Summary

The combination of Gödel’s Dialectica interpretation and negative
translation to interpret classical proofs allows one to:

I Replace classical proofs of ∀∃∀-statements (infinitary) with
constructive, combinatorial proofs of ∀∃-statements (finitary).

I Reduce use of ∀∃∀-lemmas + arithmetical choice to (their
no-counterexample interpretation) ∀∃-lemmas.

Functional interpretation shows when and how this can be done.
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Future Work

The use of no-counterexample interpretation of infinitary
statements has found applications in mainstream mathematics:
Bring together proof-theoretic and mathematical results.

Establish more “natural” conditions for e.g. eliminability of choice
than “provable in GnA

ω; and more rigorous than “I can see that
from the proof”.

Apply proof theoretic results to analysis of actual mathematical
proofs (in fixed point theory, ergodic theory, etc).
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