On Standard SBL-Algebras with Added Involutive Negations

Zuzana Haniková Petr Savický

Institute of Computer Science Academy of Sciences of the Czech Republic

Logic Colloquium 2008, University of Bern

Outline

1 Overview

- BL and Extensions
- SBL with Involutive Negations

Main result

- Characterization For Finite Sums
- T-norms with Distinguishable Negations
- T-norms with Indistinguishable Negations

3 Summary

Petr Hájek: *Metamathematics of Fuzzy Logic*, Kluwer Academic Publishers, 1998.

Introduces the Basic Fuzzy Logic BL

Intended semantics: algebras given by continuous t-norms on [0,1]

- 4 同 6 4 日 6 4 日 6

BL and Extensions SBL with Involutive Negations

BL — Language, Syntax

Basic connectives: &, \rightarrow , 0

Definable connectives:

$$\begin{array}{l} \neg \varphi \text{ is } \varphi \to 0 \\ \varphi \wedge \psi \text{ is } \varphi \& (\varphi \to \psi) \\ \varphi \lor \psi \text{ is } ((\varphi \to \psi) \to \psi) \land ((\psi \to \varphi) \to \varphi) \\ \varphi \equiv \psi \text{ is } (\varphi \to \psi) \& (\psi \to \varphi) \\ 1 \text{ is } 0 \to 0 \end{array}$$

Syntax: classical

・ 同 ト ・ ヨ ト ・ ヨ ト

э

BL and Extensions SBL with Involutive Negations

BL — Standard Semantics

A t-norm * is a binary operation on [0, 1] such that:

- * is commutative and associative
- * is non-decreasing in both arguments
- 1 * x = x and 0 * x = 0 for all $x \in [0, 1]$.

The residuum \Rightarrow of a *continuous* t-norm * is $x \Rightarrow y = \max\{z \mid x * z \le y\}.$

The standard algebra determined by * on [0,1] is $\langle [0,1], *, \Rightarrow, 0 \rangle$. Evaluation of BL-formulas: * interprets & and \Rightarrow interprets \rightarrow .

BL and Extensions SBL with Involutive Negations

Examples and characterization

Important continuous t-norms:

- Łukasiewicz t-norm: x * y is max(x + y 1, 0)
- Gödel t-norm: x * y is min(x, y)
- product t-norm: x * y is x.y

Mostert-Shields theorem: Each continuous t-norm is an "ordinal sum" of isomorphic copies of Łukasiewicz, Gödel, and product t-norms.

伺 ト イ ヨ ト イ ヨ ト

SBL with Involutive Negation

SBL – logic of continuous t-norms with strict definable negation New connective: involutive negation \sim Semantics: decreasing involution on [0, 1], i.e.,

• x < y implies $\sim y < \sim x$ for all $x, y \in [0, 1]$

•
$$\sim \sim x = x$$
 for all $x \in [0, 1]$.

Example: 1 - x

Algebras: $\langle [0,1],*,\Rightarrow,0,\sim\rangle$, shortly $\langle *,\sim\rangle$

Characterization For Finite Sums T-norms with Distinguishable Negations T-norms with Indistinguishable Negations

Types of algebras considered

Algebras $\langle *, \sim \rangle$.

Continuous t-norm * which

- has the strict negation
- is finite ordinal sum of L- and Π -components.

A finite ordinal sum of L- and Π -components is an algebra $C_1 \oplus \ldots \oplus C_n$, $n \in N$, each $C_i = L$ or $C_i = \Pi$.

Arbitrary involutive negation.

Characterization For Finite Sums T-norms with Distinguishable Negations T-norms with Indistinguishable Negations

When are two involutive negations isomorphic?

Definition

Let * be a continuous t-norm and \sim_1 , \sim_2 two involutive negations. Then \sim_1 and \sim_2 are isomorphic w. r. t. * iff $\langle *, \sim_1 \rangle$ is isomorphic to $\langle *, \sim_2 \rangle$.

Any such isomorphism is an automorphism of * on [0, 1].

Overview Chain result T-r Summary T-r

Characterization For Finite Sums T-norms with Distinguishable Negations T-norms with Indistinguishable Negations

Automorphisms of continuous t-norms

Lemma

 $f:[0,1]\longrightarrow [0,1]$ is an automorphism of * iff

- * is Π : $f(x) = x^r$ for some real r > 0 (Hion's Lemma)
- * is L: f is an identity on [0,1] (C., d'O., M.)
- * is a finite sum of Ł's and ∏'s:
 - f is identity on *L*-components;
 - f is an r-power w. r. t. * on Π -components

Problem

Characterize all continuous t-norms * for which the equivalence $TAUT(\langle *, \sim_1 \rangle) = TAUT(\langle *, \sim_2 \rangle)$ iff $\langle *, \sim_1 \rangle$ is isomorphic to $\langle *, \sim_2 \rangle$

holds for arbitrary involutive negations \sim_1 and \sim_2 .

Additionally, if for *, \sim_1 , \sim_2 TAUT($\langle *, \sim_1 \rangle$) \neq TAUT($\langle *, \sim_2 \rangle$), are these sets comparable by inclusion?

Characterization For Finite Sums T-norms with Distinguishable Negations T-norms with Indistinguishable Negations

Characterizing theorem

Theorem

Let * be a finite ordinal sum of L- and $\Pi\text{-components},$ where the first component is $\Pi.$ Then

(i) If * is Π , $\Pi \oplus j.k$, or $\Pi \oplus i.k \oplus \Pi \oplus j.k$, for $i \ge 0$, j > 0, then non-isomorphic negations yield distinct and incomparable sets of tautologies.

(ii) Otherwise (if * is of type $\Pi \oplus i.L \oplus \Pi$ or it contains at least three product components), there are two non-isomorphic negations yielding the same set of tautologies.

If the sets of tautologies are distinct, they are also incomparable by inclusion

Tractability of Involutive Negations

Task: describe the graph of \sim by a family of propositional formulas Method:

- find a dense definable set S in [0, 1]
- ullet compare the values of \sim on S against the values in S

Note: formulas defining S may contain \sim

- 4 同 ト 4 ヨ ト 4 ヨ ト

Assume \sim_1 and \sim_2 non-isomorphic.

Taking possibly isomorphic copies, make 0 < a < 1 the fixed point of \sim_1 and $\sim_2.$

For *i*, *j*, *r*, *s* positive integers, compare $\sim a^{i/j}$ against $a^{r/s}$. To do so, consider the family of formulas

$$\begin{split} & \Phi(i/j,r/s) \text{ is } \Delta(q \equiv \sim q) \& \Delta(z^j \equiv q^i) \to \Delta(q^r \to (\sim z)^s) \\ & \Phi'(i/j,r/s) \text{ is } \Delta(q \equiv \sim q) \& \Delta(z^j \equiv q^i) \to \Delta((\sim z)^s \to q^r) \end{split}$$

- 4 同 6 4 日 6 4 日 6

Characterization For Finite Sums T-norms with Distinguishable Negations T-norms with Indistinguishable Negations

Product t-norm (cont.)

Theorem

If $\langle *, \sim_1 \rangle$ is not isomorphic to $\langle *, \sim_2 \rangle$, then TAUT $\langle *, \sim_1 \rangle$ and TAUT $\langle *, \sim_2 \rangle$ are distinct and incomparable.

Other t-norms with distinguishable negations

Types of ordinal sum $(i \ge 0, j > 0)$: $\Pi \oplus j.k$ or $\Pi \oplus i.k \oplus \Pi \oplus j.k$.

Assume \sim_1 and \sim_2 non-isomorphic.

Idempotent elements of * are definable by formulas without *.

In Ł-components, dense sets of values are definable by formulas without $\sim\!\!.$

To define dense sets of values in Π-components,

- use the fixed point, or
- map values in Ł-components into Π-components using ~ (taking possibly isomorphic copies of ~₁ or ~₂).

Overview Characterization For Finite Sums Main result T-norms with Distinguishable Negations Summary T-norms with Indistinguishable Negation

Other t-norms with distinguishable negations (cont.)

Lemma

Let $x, y \in [0, 1]$ be definable for \sim_1 , \sim_2 . Assume $\sim_1 x < \sim_2 x$ and $\sim_1 x \le y \le \sim_2 x$. Then, $TAUT(\langle *, \sim_1 \rangle)$ and $TAUT(\langle *, \sim_2 \rangle)$ are incomparable.

Distinguishing formulas (example):

$$\Delta[\phi(\overline{x}) \& \psi(\overline{y})] \longrightarrow \Delta(\sim \overline{x} \to \overline{y})$$

$$\Delta[\phi(\overline{x}) \& \psi(\overline{y})] \longrightarrow \Delta(\overline{y} \to \sim \overline{x}) \& \neg \Delta(\sim \overline{x} \to \overline{y})$$

- 4 同 6 4 日 6 4 日 6

T-norms with indistinguishable negations

Assume * is s. t. there is an involutive negation which maps two product components of * onto each other.

This is iff * is of type $\Pi \oplus i.L \oplus \Pi$ or it contains at least three product components.

Theorem

If * is as above, there are two non-isomorphic involutive negations \sim_1 and \sim_2 yielding the same sets of tautologies.

Open problems

- Find axiomatizations for some of the sets of tautologies.
- Determine the complexity of some of the sets of tautologies.
- Consider (some types of) infinite sums.

- **→** → **→**

Related results

Cintula P., Klement E. P., Mesiar R., Navara M.: Residuated logics based on strict triangular norms with an involutive negation, **MLQ** 52, 2006.

Investigates lattice of subvarieties of SBL $\sim;$ for $\Pi\sim,$ the lattice is of infinite height and width.

Gehrke M., Walker C., Walker E: Fuzzy logics arising from strict de Morgan systems, Topological and Algebraic Structures in Fuzzy Sets, Kluwer 2003.

In a language without \Rightarrow , each two non-isomorphic algebras given by product t-norm * and by \sim differ in the sets of valid identities.