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Hájek’s BL

Petr Hájek: Metamathematics of Fuzzy Logic, Kluwer Academic
Publishers, 1998.

Introduces the Basic Fuzzy Logic BL

Intended semantics: algebras given by continuous t-norms on [0, 1]

Zuzana Haniková, Petr Savický On Standard SBL-Algebras with Added Involutive Negations



Overview
Main result

Summary

BL and Extensions
SBL with Involutive Negations

BL — Language, Syntax

Basic connectives: &, →, 0

Definable connectives:

¬ϕ is ϕ→ 0

ϕ ∧ ψ is ϕ&(ϕ→ ψ)

ϕ ∨ ψ is ((ϕ→ ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)

ϕ ≡ ψ is (ϕ→ ψ)&(ψ → ϕ)

1 is 0 → 0

Syntax: classical
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BL — Standard Semantics

A t-norm ∗ is a binary operation on [0, 1] such that:

∗ is commutative and associative

∗ is non-decreasing in both arguments

1 ∗ x = x and 0 ∗ x = 0 for all x ∈ [0, 1].

The residuum ⇒ of a continuous t-norm ∗ is
x ⇒ y = max{z | x ∗ z ≤ y}.

The standard algebra determined by ∗ on [0, 1] is 〈[0, 1], ∗,⇒, 0〉.

Evaluation of BL-formulas: ∗ interprets & and ⇒ interprets →.
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Examples and characterization

Important continuous t-norms:

 Lukasiewicz t-norm: x ∗ y is max(x + y − 1, 0)

Gödel t-norm: x ∗ y is min(x , y)

product t-norm: x ∗ y is x .y

Mostert-Shields theorem: Each continuous t-norm is an “ordinal
sum” of isomorphic copies of  Lukasiewicz, Gödel, and product
t-norms.
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SBL with Involutive Negation

SBL – logic of continuous t-norms with strict definable negation

New connective: involutive negation ∼
Semantics: decreasing involution on [0, 1], i.e.,

x < y implies ∼ y <∼ x for all x , y ∈ [0, 1]

∼∼ x = x for all x ∈ [0, 1].

Example: 1− x

Algebras: 〈[0, 1], ∗,⇒, 0,∼〉, shortly 〈∗,∼〉
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Types of algebras considered

Algebras 〈∗,∼〉.

Continuous t-norm ∗ which

has the strict negation

is finite ordinal sum of  L- and Π-components.

A finite ordinal sum of L- and Π-components is an algebra
C1 ⊕ . . .⊕ Cn, n ∈ N, each Ci = L or Ci = Π.

Arbitrary involutive negation.
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When are two involutive negations isomorphic?

Definition

Let ∗ be a continuous t-norm and ∼1, ∼2 two involutive negations.
Then ∼1 and ∼2 are isomorphic w. r. t. ∗ iff 〈∗,∼1〉 is isomorphic
to 〈∗,∼2〉.

Any such isomorphism is an automorphism of ∗ on [0, 1].
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Automorphisms of continuous t-norms

Lemma

f : [0, 1] −→ [0, 1] is an automorphism of ∗ iff

∗ is Π: f (x) = x r for some real r > 0 (Hion’s Lemma)

∗ is  L: f is an identity on [0, 1] (C., d’O., M.)

∗ is a finite sum of  L’s and Π’s:
f is identity on  L-components;
f is an r-power w. r. t. ∗ on Π-components
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Problem

Characterize all continuous t-norms ∗ for which the equivalence
TAUT(〈∗,∼1〉) = TAUT(〈∗,∼2〉)

iff
〈∗,∼1〉 is isomorphic to 〈∗,∼2〉

holds for arbitrary involutive negations ∼1 and ∼2.

Additionally, if for ∗, ∼1, ∼2

TAUT(〈∗,∼1〉) 6= TAUT(〈∗,∼2〉),
are these sets comparable by inclusion?
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Characterizing theorem

Theorem

Let ∗ be a finite ordinal sum of  L- and Π-components, where the
first component is Π. Then

(i) If ∗ is Π, Π⊕ j . L, or Π⊕ i . L⊕ Π⊕ j . L, for i ≥ 0, j > 0,
then non-isomorphic negations yield distinct and incomparable
sets of tautologies.

(ii) Otherwise (if ∗ is of type Π⊕ i . L⊕ Π or it contains at
least three product components), there are two
non-isomorphic negations yielding the same set of tautologies.

If the sets of tautologies are distinct, they are also incomparable by
inclusion
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Tractability of Involutive Negations

Task: describe the graph of ∼ by a family of propositional formulas

Method:

find a dense definable set S in [0, 1]

compare the values of ∼ on S against the values in S

Note: formulas defining S may contain ∼

Zuzana Haniková, Petr Savický On Standard SBL-Algebras with Added Involutive Negations



Overview
Main result

Summary

Characterization For Finite Sums
T-norms with Distinguishable Negations
T-norms with Indistinguishable Negations

Product t-norm

Assume ∼1 and ∼2 non-isomorphic.

Taking possibly isomorphic copies, make 0 < a < 1 the fixed point
of ∼1 and ∼2.

For i , j , r , s positive integers, compare ∼ ai/j against ar/s .
To do so, consider the family of formulas

Φ(i/j , r/s) is ∆(q ≡∼ q)&∆(z j ≡ qi ) → ∆(qr → (∼ z)s)

Φ′(i/j , r/s) is ∆(q ≡∼ q)&∆(z j ≡ qi ) → ∆((∼ z)s → qr )
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Product t-norm (cont.)

Theorem

If 〈∗,∼1〉 is not isomorphic to 〈∗,∼2〉, then TAUT〈∗,∼1〉 and
TAUT〈∗,∼2〉 are distinct and incomparable.
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Other t-norms with distinguishable negations

Types of ordinal sum (i ≥ 0, j > 0): Π⊕ j . L or Π⊕ i . L⊕Π⊕ j . L.

Assume ∼1 and ∼2 non-isomorphic.

Idempotent elements of ∗ are definable by formulas without ∗.

In  L-components, dense sets of values are definable by formulas
without ∼.

To define dense sets of values in Π-components,

use the fixed point, or

map values in  L-components into Π-components using ∼
(taking possibly isomorphic copies of ∼1 or ∼2).
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Other t-norms with distinguishable negations (cont.)

Lemma

Let x , y ∈ [0, 1] be definable for ∼1, ∼2. Assume ∼1 x <∼2 x and
∼1 x ≤ y ≤∼2 x. Then, TAUT(〈∗,∼1〉) and TAUT(〈∗,∼2〉) are
incomparable.

Distinguishing formulas (example):

∆[φ(x) &ψ(y)] −→ ∆(∼ x → y)

∆[φ(x) &ψ(y)] −→ ∆(y →∼ x) &¬∆(∼ x → y)
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T-norms with indistinguishable negations

Assume ∗ is s. t. there is an involutive negation which maps two
product components of ∗ onto each other.

This is iff ∗ is of type Π⊕ i . L⊕ Π or it contains at least three
product components.

Theorem

If ∗ is as above, there are two non-isomorphic involutive negations
∼1 and ∼2 yielding the same sets of tautologies.
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Open problems

Find axiomatizations for some of the sets of tautologies.

Determine the complexity of some of the sets of tautologies.

Consider (some types of) infinite sums.
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Related results

Cintula P., Klement E. P., Mesiar R., Navara M.: Residuated logics
based on strict triangular norms with an involutive negation, MLQ
52, 2006.
Investigates lattice of subvarieties of SBL∼; for Π ∼, the lattice is
of infinite height and width.

Gehrke M., Walker C., Walker E: Fuzzy logics arising from strict de
Morgan systems, Topological and Algebraic Structures in
Fuzzy Sets, Kluwer 2003.
In a language without ⇒, each two non-isomorphic algebras given
by product t-norm ∗ and by ∼ differ in the sets of valid identities.
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