Generalised Hrushovski constructions

Martin Hils (HU Berlin)

Logic Colloquium 2008 Bern Special Session on Model Theory 6 July 2008

• • = •

Outline of the talk

- 1. Introduction
- 2. Generalised free fusion
- 3. A variant: bicoloured fields and bad fields
- 4. Generic automorphisms of Hrushovski constructions

3 🔊 🤅 3

The geometry of strongly minimal sets

- A pregeometry on a set X is given by a finitary closure operator cl : P(X) → P(X) satisfying the exchange lemma.
- Get notions of **dimension**, **independence**, **basis** etc.
- Ex: linear independence in a v.s.; alg. independence in a field.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The geometry of strongly minimal sets

- A pregeometry on a set X is given by a finitary closure operator cl : P(X) → P(X) satisfying the exchange lemma.
- Get notions of dimension, independence, basis etc.
- Ex: linear independence in a v.s.; alg. independence in a field.
- If T is strongly minimal and M ⊨ T, then acl gives rise to a pregeometry on M (with dim = MR).

(1) マン・ション (1) マン・

The geometry of strongly minimal sets

- A pregeometry on a set X is given by a finitary closure operator cl : P(X) → P(X) satisfying the exchange lemma.
- Get notions of dimension, independence, basis etc.
- Ex: linear independence in a v.s.; alg. independence in a field.
- If T is strongly minimal and M ⊨ T, then acl gives rise to a pregeometry on M (with dim = MR).

Trichotomy Conjecture (B. Zilber 1980)

Let T be a strongly minimal theory. Then, there are three cases:

- ► The geometry of *T* is **trivial**.
- ► *T* has a **locally modular** non-trivial geometry (projective or affine geometry over some skew-field).
- ► If T is not locally modular, T interprets an algebraically closed field.

E. Hrushovski 1988: Construction of a counter-example to the Trichotomy Conjecture, using a new **amalgamation method**.

E. Hrushovski 1988: Construction of a counter-example to the Trichotomy Conjecture, using a new **amalgamation method**.

- later used to construct other objects with exotic geometries;
- ► most noteworthy: the fusion construction by Hrushovski, showing e.g. that there is a strongly minimal structure (M, +1, ·1, +2, ·2) such that, for i = 1, 2, (M, +i, ·i) ⊨ ACF_{pi}.

・ 戸 ト ・ ヨ ト ・ ヨ ト

E. Hrushovski 1988: Construction of a counter-example to the Trichotomy Conjecture, using a new **amalgamation method**.

- later used to construct other objects with exotic geometries;
- ► most noteworthy: the fusion construction by Hrushovski, showing e.g. that there is a strongly minimal structure (M, +1, ·1, +2, ·2) such that, for i = 1, 2, (M, +i, ·i) ⊨ ACF_{pi}.

Theorem (E.Hrushovski 1992)

Let T_1 et T_2 be strongly minimal theories in (countable) disjoint languages, with definable multiplicities (DMP). Then, there is a strongly minimal theory $T \supseteq T_1 \cup T_2$.

(日本) (日本) (日本)

Strongly minimal fusion: two steps

free fusion (we are mainly interested in this part in our talk):

▶ *Predimension function* (on finite subsets of $\mathcal{L}_1 \cup \mathcal{L}_2$ -structures)

$$\delta(A) := \dim_1(A) + \dim_2(A) - |A|;$$

Strongly minimal fusion: two steps

free fusion (we are mainly interested in this part in our talk):

• *Predimension function* (on finite subsets of $\mathcal{L}_1 \cup \mathcal{L}_2$ -structures)

$$\delta(A) := \dim_1(A) + \dim_2(A) - |A|;$$

get notion of strong embedding ≤:
 for A ⊆ B, A ≤ B if δ(A') ≥ δ(A) for all A ⊆ A' ⊆ B;

free fusion (we are mainly interested in this part in our talk):

• Predimension function (on finite subsets of $\mathcal{L}_1 \cup \mathcal{L}_2$ -structures)

$$\delta(A) := \dim_1(A) + \dim_2(A) - |A|;$$

- b get notion of strong embedding ≤: for A ⊆ B, A ≤ B if δ(A') ≥ δ(A) for all A ⊆ A' ⊆ B;
- put $C := \{A \text{ finite } | \emptyset \leq A\};$
- (C, \leq) is countable, has (AP), (JEP) and (HP);
- ▶ the Fraïssé limit of (C, \leq) is ω -stable of rank ω .

free fusion (we are mainly interested in this part in our talk):

• Predimension function (on finite subsets of $\mathcal{L}_1 \cup \mathcal{L}_2$ -structures)

$$\delta(A) := \dim_1(A) + \dim_2(A) - |A|;$$

- b get notion of strong embedding ≤: for A ⊆ B, A ≤ B if δ(A') ≥ δ(A) for all A ⊆ A' ⊆ B;
- put $C := \{A \text{ finite } | \emptyset \leq A\};$
- (C, \leq) is countable, has (AP), (JEP) and (HP);
- ▶ the Fraïssé limit of (C, \leq) is ω -stable of rank ω .

collapse:

Amalgamate in a restricted class, uniformly bounding the number of solutions of sets of dim. $0 \Rightarrow$ get a strongly minimal theory.

(日本) (日本) (日本)

Question (Hrushovski 1992)

Let T_1 and T_2 be s.m. (in countable languages with DMP) which intersect in an infinite vector space over a finite field. Is it possible to find a s.m. completion of $T_1 \cup T_2$?

伺 ト イヨト イヨト

Question (Hrushovski 1992)

Let T_1 and T_2 be s.m. (in countable languages with DMP) which intersect in an infinite vector space over a finite field. Is it possible to find a s.m. completion of $T_1 \cup T_2$?

More generally: Is it possible to find a s.m. fusion T of two s.m. theories T_1 , T_2 intersecting in some third theory T_0 ?

A trivial example

- For G a group let T_G = theory of an infinite free G-action.
 (⇒ T_G trivial strongly minimal)
- ▶ $G_0 \leq G_1, G_2, G := G_1 *_{G_0} G_2$ ⇒ T_G strongly minimal fusion of T_{G_1} and T_{G_2} over T_{G_0} .

A modular non-trivial example

- ▶ Let T_F be the **theory of an infinite vector space over** F, where F is a skew-field. (\Rightarrow T_F modular strongly minimal)
- ▶ For $F_0 \subseteq F_1, F_2$, the ring $F_1 *_{F_0} F_2$ allows a field of fractions F⇒ T_F strongly minimal fusion of T_{F_1} and T_{F_2} over T_{F_0} .

Two non-examples, two obstructions

- 1. Consider the following relative fusion context:
 - $T_0 = \mathbb{Q}$ -vector spaces, with c, d (linearly independent) named,
 - $T_1 = \mathbb{Q}[i]$ -vector spaces, with $i \cdot c = d$,
 - $T_2 = \mathbb{Q}(X)$ -vector spaces, with $X \cdot c = d$.

In every $M \models T_1 \cup T_2$, ker(i - X) defines a proper non-trivial \mathbb{Q} -subspace of M. In particular, Th(M) is not of rank 1.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

- 1. Consider the following relative fusion context:
 - $T_0 = \mathbb{Q}$ -vector spaces, with c, d (linearly independent) named,
 - $T_1 = \mathbb{Q}[i]$ -vector spaces, with $i \cdot c = d$,
 - $T_2 = \mathbb{Q}(X)$ -vector spaces, with $X \cdot c = d$.

In every $M \models T_1 \cup T_2$, ker(i - X) defines a proper non-trivial \mathbb{Q} -subspace of M. In particular, Th(M) is not of rank 1.

- 2. There is an example with the following properties:
 - T_1 , T_2 are modular s.m., T_0 trivial and ω -categorical;
 - no completion of $T_1 \cup T_2$ is stable (there are *simple* ones).

(日) (日) (日)

- 1. Consider the following relative fusion context:
 - $T_0 = \mathbb{Q}$ -vector spaces, with c, d (linearly independent) named,
 - $T_1 = \mathbb{Q}[i]$ -vector spaces, with $i \cdot c = d$,
 - $T_2 = \mathbb{Q}(X)$ -vector spaces, with $X \cdot c = d$.

In every $M \models T_1 \cup T_2$, ker(i - X) defines a proper non-trivial \mathbb{Q} -subspace of M. In particular, Th(M) is not of rank 1.

- 2. There is an example with the following properties:
 - T_1 , T_2 are modular s.m., T_0 trivial and ω -categorical;
 - no completion of $T_1 \cup T_2$ is stable (there are *simple* ones).
- \Rightarrow obstructions to a s.m. fusion, a logical and a geometrical one:
 - Definability problems if T_0 is not ω -categorical.
 - > The geometrical interaction of the two structures can be wild.

Weaken the requirements on \mathcal{T} : it should support a fusion of the pregeometries, in a model-theoretically meaningful way, e.g.

Weaken the requirements on \mathcal{T} : it should support a fusion of the pregeometries, in a model-theoretically meaningful way, e.g.

as the forking pregeometry attached to a regular type, where *T* is stable (ex.: free fusion in the original context);

Weaken the requirements on \mathcal{T} : it should support a fusion of the pregeometries, in a model-theoretically meaningful way, e.g.

- as the forking pregeometry attached to a regular type, where *T* is stable (ex.: free fusion in the original context);
- as before, with "simple" instead of "stable";

Weaken the requirements on \mathcal{T} : it should support a fusion of the pregeometries, in a model-theoretically meaningful way, e.g.

- as the forking pregeometry attached to a regular type, where *T* is stable (ex.: free fusion in the original context);
- as before, with "simple" instead of "stable";
- ► as a pregeometry coming from some independence relation.

A theory T is pregeometric if acl_T has the exchange property (i.e. gives rise to a pregeometry).

- A theory T is pregeometric if acl_T has the exchange property (i.e. gives rise to a pregeometry).
- ▶ If in addition T eliminates \exists^{∞} , it is called **geometric**.

伺下 イヨト イヨト

- A theory T is pregeometric if acl_T has the exchange property (i.e. gives rise to a pregeometry).
- ▶ If in addition T eliminates \exists^{∞} , it is called **geometric**.
- Examples of geometric theories:
 - Strongly minimal theories, more generally simple theories of SU-rank 1 (e.g. the random graph, pseudofinite fields).
 - ► *RCF*, more generally *o*-minimal theories.
 - $Th(\mathbb{Q}_p)$, as well as ACVF.
 - Reducts of (pre-)geometric theories are (pre-)geometric.

・ 戸 ト ・ ヨ ト ・ ヨ ト

- T_0 is strongly minimal and modular.
- Work with the predimension $\delta = \dim_1 + \dim_2 \dim_0$.
- ▶ Obtain a *fusion class* (C, ≤). Structures in C are finitely ⟨·⟩-generated (⟨·⟩ = transitive closure of acl₁ and acl₂).

・ 戸 ト ・ ヨ ト ・ ヨ ト

- T_0 is strongly minimal and modular.
- Work with the predimension $\delta = \dim_1 + \dim_2 \dim_0$.
- ▶ Obtain a *fusion class* (C, ≤). Structures in C are finitely ⟨·⟩-generated (⟨·⟩ = transitive closure of acl₁ and acl₂).
- M is rich for C if for all A, B in C with A ≤ B and A ≤ M, there is a strong embedding f : B → M over A.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- T_0 is strongly minimal and modular.
- Work with the predimension $\delta = \dim_1 + \dim_2 \dim_0$.
- ▶ Obtain a *fusion class* (C, ≤). Structures in C are finitely ⟨·⟩-generated (⟨·⟩ = transitive closure of acl₁ and acl₂).
- ▶ *M* is *rich* for *C* if for all *A*, *B* in *C* with $A \le B$ and $A \le M$, there is a strong embedding $f : B \to M$ over *A*.
- (C, ≤) has (AP) ⇒ rich structures do exist.
 Let T_ω be the theory of all rich structures.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- T_0 is strongly minimal and modular.
- Work with the predimension $\delta = \dim_1 + \dim_2 \dim_0$.
- ▶ Obtain a *fusion class* (C, ≤). Structures in C are finitely ⟨·⟩-generated (⟨·⟩ = transitive closure of acl₁ and acl₂).
- M is rich for C if for all A, B in C with A ≤ B and A ≤ M, there is a strong embedding f : B → M over A.
- (C, ≤) has (AP) ⇒ rich structures do exist.
 Let T_ω be the theory of all rich structures.
- ▶ In general, (C, \leq) does not have (JEP) \Rightarrow T_{ω} incomplete.
- saturated models of T_{ω} are not necessarily rich.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definability assumptions:

- T_1 , T_2 are geometric (pregeometric with elimination of \exists^{∞})
- T_0 is s.m. ω -categorical (and modular).

• • = • • = •

Definability assumptions:

- T_1 , T_2 are geometric (pregeometric with elimination of \exists^{∞})
- T_0 is s.m. ω -categorical (and modular).

Theorem

In this context, T_{ω} can be axiomatised. We obtain:

- 1. Sufficiently saturated models of T_{ω} are rich.
- 2. In T_{ω} , every formula is equivalent to a boolean combinations of bounded existential formulas (assuming the T_i have QE in \mathcal{L}_i).
- 3. The completions of T_{ω} are determined by $qftp_{\mathcal{L}}(\langle \emptyset \rangle)$ (here, $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$).

・ 戸 ト ・ ヨ ト ・ ヨ ト

Simple fusion

Context: • T_1 , T_2 simple SU-rank 1 (in particular geometric)

- T_0 is s.m. ω -categorical.
- The expansions $T_i \supseteq T_0$ satisfy condition **A** for i = 1, 2.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Simple fusion

Context: • T_1 , T_2 simple SU-rank 1 (in particular geometric)

- T_0 is s.m. ω -categorical.
- The expansions $T_i \supseteq T_0$ satisfy condition **A** for i = 1, 2.

Theorem

In this context, all completions of the free fusion T_{ω} are simple of SU-rank $\leq \omega$, with a natural non-forking relation.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Simple fusion

Context: • T_1 , T_2 simple SU-rank 1 (in particular geometric)

- T_0 is s.m. ω -categorical.
- The expansions $T_i \supseteq T_0$ satisfy condition **A** for i = 1, 2.

Theorem

In this context, all completions of the free fusion T_{ω} are simple of SU-rank $\leq \omega$, with a natural non-forking relation.

The proof uses the Theorem of Kim-Pillay. Difficult to establish: the Independence Theorem.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Context: • T_1 , T_2 simple SU-rank 1 (in particular geometric)

- T_0 is s.m. ω -categorical.
- The expansions $T_i \supseteq T_0$ satisfy condition **A** for i = 1, 2.

Theorem

In this context, all completions of the free fusion T_{ω} are simple of SU-rank $\leq \omega$, with a natural non-forking relation.

- The proof uses the Theorem of Kim-Pillay. Difficult to establish: the Independence Theorem.
- Note the similarities with results of Chatzidakis-Pillay about stable theories with a generic automorphism (I will come to that later).

(四) (日) (日)

Fact

In the following cases, $T_1 \supseteq T_0$ satisfies condition **A**:

- 1. T_0 with trivial pregeometry, T_1 arbitrary
- 2. T_1 strongly minimal, T_0 arbitrary.
- 3. F a pseudofinite field, $T_1 = Th(F, +, \times)$, $T_0 = Th(F, +)$

4 **A** N A **A** N A

3 1 3

Fact

In the following cases, $T_1 \supseteq T_0$ satisfies condition **A**:

- 1. T_0 with trivial pregeometry, T_1 arbitrary
- 2. T_1 strongly minimal, T_0 arbitrary.
- 3. F a pseudofinite field, $T_1 = Th(F, +, \times)$, $T_0 = Th(F, +)$

Corollary

- 1. Two arbitrary SU-rank 1 theories can be fused into a simple theory of SU-rank $\leq \omega$.
- 2. For ω -categorical T_0 , and s.m. expansions $T_1, T_2 \supseteq T_0$, there is a simple fusion of T_1 and T_2 over T_0 (of SU-rank $\leq \omega$).
- 3. There is a simple structure $(F, +, \times_1, \times_2)$ of SU-rank ω such that $(F, +, \times_1) \models PSF_p$ and $(F, +, \times_2) \models ACF_p$ (for p > 0).

- 4 戸 2 4 戸 2 4 戸 2 1

э

$\omega\text{-stable}$ free fusion

Setting: • T_1 , T_2 s.m.;

- T_0 is (s.m.) ω -categorical;
- no geometric obstruction (tame interaction of $T_1 \& T_2$).

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Setting: • T_1 , T_2 s.m.;

- T_0 is (s.m.) ω -categorical;
- no geometric obstruction (tame interaction of $T_1 \& T_2$).

Fact

If one expansion $T_0 \subseteq T_i$ preserves multiplicities (e.g. if T_0 is the theory of a vector space), there are no geometric obstructions.

Setting: • T_1 , T_2 s.m.;

- T_0 is (s.m.) ω -categorical;
- no geometric obstruction (tame interaction of $T_1 \& T_2$).

Fact

If one expansion $T_0 \subseteq T_i$ preserves multiplicities (e.g. if T_0 is the theory of a vector space), there are no geometric obstructions.

Theorem (Hasson, H. 2006)

In the above setting, T_{ω} is complete ω -stable with a unique generic type of rank ω .

A detailed description of the types to be collapsed can be given.

Setting: • T_1 , T_2 s.m. with DMP, in countable languages;

- T_0 is (s.m.) ω -categorical;
- no geometric obstruction.

Collapse results (from T_{ω} onto a s.m. theory):

伺い イヨン イヨン

Setting: • T_1 , T_2 s.m. with DMP, in countable languages;

- T_0 is (s.m.) ω -categorical;
- no geometric obstruction.

Collapse results (from T_{ω} onto a s.m. theory):

• Hrushovski 1992: for T_0 = theory of an infinite set;

・ 同 ト ・ ヨ ト ・ ヨ ト

Setting: • T_1 , T_2 s.m. with DMP, in countable languages;

- T_0 is (s.m.) ω -categorical;
- no geometric obstruction.

Collapse results (from T_{ω} onto a s.m. theory):

- Hrushovski 1992: for T_0 = theory of an infinite set;
- ▶ Hasson, H. 2006: for T_1 , T_2 both locally modular;

・ 同 ト ・ ヨ ト ・ ヨ ト

Setting: • T_1 , T_2 s.m. with DMP, in countable languages;

- T_0 is (s.m.) ω -categorical;
- no geometric obstruction.

Collapse results (from T_{ω} onto a s.m. theory):

- Hrushovski 1992: for T_0 = theory of an infinite set;
- ▶ Hasson, H. 2006: for T_1 , T_2 both locally modular;
- Baudisch, Martin Pizarro, Ziegler 2007: for T₀ = theory of an infinite F_q-vector space;

・ 同 ト ・ ヨ ト ・ ヨ ト …

Setting: • T_1 , T_2 s.m. with DMP, in countable languages;

- T_0 is (s.m.) ω -categorical;
- no geometric obstruction.

Collapse results (from T_{ω} onto a s.m. theory):

- Hrushovski 1992: for T_0 = theory of an infinite set;
- ▶ Hasson, H. 2006: for T_1 , T_2 both locally modular;
- ▶ Baudisch, Martin Pizarro, Ziegler 2007: for T₀ = theory of an infinite F_q-vector space;
- Not hard to see: the arbitrary case reduces to one of the previous cases.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Poizat (1999,2001): Construction of various expansions of algebraically closed fields K (adding a new predicate).

Black fields:

- $N^{K} \subseteq K$ distinguished *subset*, *char*(K) arbitrary (but fixed).
- Predimension $\delta((K, N^K)) = 2 \operatorname{tr.} \operatorname{deg}(K) |N^K|$
- Free amalgamation \Rightarrow black field of Morley rank $\omega \cdot 2$.
- Collapse (Poizat, Baldwin-Holland) to a black field of MR 2.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Poizat (1999,2001): Construction of various expansions of algebraically closed fields K (adding a new predicate).

Black fields:

- $N^{K} \subseteq K$ distinguished *subset*, *char*(K) arbitrary (but fixed).
- Predimension $\delta((K, N^K)) = 2 \operatorname{tr.} \operatorname{deg}(K) |N^K|$
- Free amalgamation \Rightarrow black field of Morley rank $\omega \cdot 2$.
- Collapse (Poizat, Baldwin-Holland) to a black field of MR 2.
 Red fields:
 - ▶ $R^{K} \subseteq K$ distinguished *additive subgroup*, char(K) = p > 0.
 - ▶ Predimension $\delta((K, R^K)) = 2 \operatorname{tr.deg}(K) \operatorname{l.dim}_{\mathbb{F}_p}(R^K)$
 - Free amalgamation \Rightarrow red field of Morley rank $\omega \cdot 2$.
 - ► Collapse (Baudisch, Martin Pizarro, Ziegler) to MR 2.

Green fields:

- Ü^K ⊆ K* is a distinguished multiplicative subgroup, with Ü divisible and torsion free, char(K) = 0.
- ▶ Predimension $\delta((K, \ddot{\textbf{U}}^{K})) = 2 \operatorname{tr.} \operatorname{deg}(K) \operatorname{I.} \operatorname{dim}_{\mathbb{Q}}(\ddot{\textbf{U}}^{K})$
- Free amalgamation ⇒ green field of Morley rank ω · 2, the subgroup Ü is of rank ω.

Green fields:

- Ü^K ⊆ K* is a distinguished multiplicative subgroup, with Ü divisible and torsion free, char(K) = 0.
- ▶ Predimension $\delta((K, \ddot{\textbf{U}}^{K})) = 2 \operatorname{tr.} \operatorname{deg}(K) \operatorname{I.} \operatorname{dim}_{\mathbb{Q}}(\ddot{\textbf{U}}^{K})$
- Free amalgamation ⇒ green field of Morley rank ω · 2, the subgroup Ü is of rank ω.
- Note: A priori, there is a logical obstruction
 ⇒ construction requires deep theorems from algebraic geometry.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Green fields:

- Ü^K ⊆ K* is a distinguished multiplicative subgroup, with Ü divisible and torsion free, char(K) = 0.
- ▶ Predimension $\delta((K, \ddot{\textbf{U}}^{K})) = 2 \operatorname{tr.} \operatorname{deg}(K) \operatorname{I.} \operatorname{dim}_{\mathbb{Q}}(\ddot{\textbf{U}}^{K})$
- Free amalgamation ⇒ green field of Morley rank ω · 2, the subgroup Ü is of rank ω.
- Note: A priori, there is a logical obstruction
 ⇒ construction requires deep theorems from algebraic geometry.

Remark

Bicoloured structures have simple analogues, e.g. for p > 0, there is $F \models Psf_p$ with an additive subgroup $R^F \leq F$ such that (F, R) is supersimple of SU-rank $\omega \cdot 2$.

Algebraicity Conjecture (Cherlin-Zilber)

Every infinite simple group of finite Morley rank is an algebraic group over an algebraically closed field.

Algebraicity Conjecture (Cherlin-Zilber)

Every infinite simple group of finite Morley rank is an algebraic group over an algebraically closed field.

An obstacle in the initial proof strategy:
 Bad Fields: structures (K, Ü) of finite Morley rank with K ⊨ ACF and Ü a proper infinite subgroup of (K*, ·).

Longstanding open question of B. Zilber: Do bad fields exist?

Algebraicity Conjecture (Cherlin-Zilber)

Every infinite simple group of finite Morley rank is an algebraic group over an algebraically closed field.

- An obstacle in the initial proof strategy:
 Bad Fields: structures (K, Ü) of finite Morley rank with K ⊨ ACF and Ü a proper infinite subgroup of (K*, ·).
- Longstanding open question of B. Zilber: Do bad fields exist?

Theorem (Baudisch, Martin Pizarro, H., Wagner) There is a bad field (K, \ddot{U}) in char. 0, obtained by collapsing Poizat's green field ("bad field of infinite rank").

・ 同 ト ・ ヨ ト ・ ヨ ト

Generic automorphisms of stable theories

- ► Let T be a stable, complete and model-complete L-theory. (in case T is not model-complete, we morleyise first)
- $(M, \sigma) \models T_{\sigma}$ iff $M \models T$ and $\sigma \in Aut_{\mathcal{L}}(M)$ (in $\mathcal{L} \cup \{\sigma\}$)
- We say the generic automorphism is axiomatisable in T: \Leftrightarrow T_{σ} admits a model-companion (denoted TA).

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Generic automorphisms of stable theories

- ► Let T be a stable, complete and model-complete L-theory. (in case T is not model-complete, we morleyise first)
- $(M, \sigma) \models T_{\sigma}$ iff $M \models T$ and $\sigma \in Aut_{\mathcal{L}}(M)$ (in $\mathcal{L} \cup \{\sigma\}$)
- We say the generic automorphism is axiomatisable in T: \Leftrightarrow T_{σ} admits a model-companion (denoted TA).
- Profound study of ACFA by Chatzidakis-Hrushovski.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Generic automorphisms of stable theories

- ► Let T be a stable, complete and model-complete L-theory. (in case T is not model-complete, we morleyise first)
- $(M, \sigma) \models T_{\sigma}$ iff $M \models T$ and $\sigma \in Aut_{\mathcal{L}}(M)$ (in $\mathcal{L} \cup \{\sigma\}$)
- We say the generic automorphism is axiomatisable in T :⇔ T_σ admits a model-companion (denoted TA).
- Profound study of ACFA by Chatzidakis-Hrushovski.

Fact (Chatzidakis-Pillay)

TA is a simple theory. Every formula is equivalent to a boolean combination of bounded existential formulas (assuming T has QE), and its completions are given by the action of σ on $\operatorname{acl}(\emptyset)$

(日本) (日本) (日本)

Theorem

1. Let T_1 , T_2 be s.m. with DMP, $T_0 \omega$ -categorical and assume there are no geometric obstructions. Then the generic automorphism is axiomatisable in T_{ω} .

Theorem

- 1. Let T_1 , T_2 be s.m. with DMP, $T_0 \omega$ -categorical and assume there are no geometric obstructions. Then the generic automorphism is axiomatisable in T_{ω} .
- 2. Axiomatisability also holds in various other theories obtained by a (free) Hrushovski amalgamation, e.g.
 - Hrushovski's ab initio construction;
 - black fields and red fields;
 - generic plane curve over an algebraically closed field.

Theorem

- 1. Let T_1 , T_2 be s.m. with DMP, $T_0 \omega$ -categorical and assume there are no geometric obstructions. Then the generic automorphism is axiomatisable in T_{ω} .
- 2. Axiomatisability also holds in various other theories obtained by a (free) Hrushovski amalgamation, e.g.
 - Hrushovski's ab initio construction;
 - black fields and red fields;
 - generic plane curve over an algebraically closed field.

Fact (Hasson-Hrushovski)

For strongly minimal T, the generic automorphism is axiomatisable iff T has the DMP.

• • = • • = •

Idea of the proof.

We first establish a general criterion: The generic automorphism is axiomatisable if we have a *notion of genericity* s.t.

- there are "enough" formulas containing a single generic type;
- "containing a single generic type" is definable in families;

"projecting the generic on the generic" is definable in families.
 (We give "geometric axioms" in this case, cf. Scanlon's talk).

We then exhibit such genericity notions in the above contexts.

Idea of the proof.

We first establish a general criterion: The generic automorphism is axiomatisable if we have a *notion of genericity* s.t.

- there are "enough" formulas containing a single generic type;
- "containing a single generic type" is definable in families;
- "projecting the generic on the generic" is definable in families.
 (We give "geometric axioms" in this case, cf. Scanlon's talk).

We then exhibit such genericity notions in the above contexts.

Remark

In the corresponding collapsed versions, the axiomatisability of the generic automorphism follows from results of Chatzidakis-Pillay. It can also be shown using the above general criterion.

(日) (日) (日)

Compatibility with other generic constructions: lovely pairs

- Ben-Yaacov, Pillay and Vassiliev introduced Lovely pairs (of models) of a simple theory *T*, i.e. *L* ∪ {*P*}-structures of the form (*M*, *P*(*M*)), with *P*(*M*) ≼_L *M* ⊨ *T* and satisfying certain genericity conditions.
- Common generalisation of Poizat's *belles paires* in a stable theory and Vassiliev's *generic pairs* in a SU-rank 1 theory.
- BPV show (among other things) that the following is equivalent:
 - 1. Lovelyness is model-theoretically meaningful (i.e. saturated models of the theory of lovely pairs are lovely)
 - 2. *T* has the *wnfcp* (weak non-finite cover property), i.e. certain local ranks are finite and definable in *T*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Compatibility with other generic constructions: lovely pairs

- Ben-Yaacov, Pillay and Vassiliev introduced Lovely pairs (of models) of a simple theory *T*, i.e. *L* ∪ {*P*}-structures of the form (*M*, *P*(*M*)), with *P*(*M*) ≼_L *M* ⊨ *T* and satisfying certain genericity conditions.
- Common generalisation of Poizat's *belles paires* in a stable theory and Vassiliev's *generic pairs* in a SU-rank 1 theory.
- BPV show (among other things) that the following is equivalent:
 - 1. Lovelyness is model-theoretically meaningful (i.e. saturated models of the theory of lovely pairs are lovely)
 - 2. *T* has the *wnfcp* (weak non-finite cover property), i.e. certain local ranks are finite and definable in *T*.

Theorem

In the simple fusion context (as well as in other simple free amalgamation contexts), T_{ω} has the wnfcp.