G = omega-categorical group H = infinite subgroup of G. H is called **inert** in G if for every gfrom G the intersection $H \cap gHg^{-1}$ is of finite index in H.

Proposition 1. Every finite subgroup of G is contained in an infinite residually finite inert subgroup of G.

G is residually finite if every finite subset F of non-trivial elements of Ghas empty intersection with some normal subgroup of G of finite index.

Proposition 1 follows from the main results of [V.Belyaev, Locally finite groups with a finite non-separable subgroup, S.Math.J., 1993]; H < G is separable, if there is a non-trvl finite *H*-invariant K < G with $H \cap K = 1$. Let H be an inert residually finite subgroup of G and let $X = \{gK : K \cap H \text{ is of finite index both}$ in K and $H\}$.

By [Belyaev] the action of G on Xby multiplication defines an embedding of G into Sym(X) such that the closure G^c is locally compact and the closure H^c is a compact subgroup of G^c .

If G is residually finite the completion G^c with respect to G is the profinite completion of G.

Proposition 2. G^c is locally finite. If G is abelian (*k*-step nilpotent, soluble), then G^c is abelian (*k*-step nilpotent, soluble resp.).

Proposition 3.

G is finite-by-abelian-by-finite if and only if there is a positive real $\varepsilon < I$ such that for any infinite compact $C < G^c$ we have

 $\mu_C (\{ (x,y) \in C \ge C \ge xy = yx \}) = \varepsilon,$ where μ_C is the normalized Haar measure on C. A group K has countable (topological) cofinality if K can be presented as the union of an ω -chain of proper (open) subgroups.

What is the cofinality of G^c ?

Observation. If G^c is not compact then G^c has countable topological cofinality.

Apps-Wilson Theorem.

An ω -categorical group G has a finite series $1=G_0 < G_1 < \ldots < G_n = G$ with each G_i characteristic in G, and with each G_i / G_{i-1} either elementary abelian, or isomorphic to some Boolean power P^R with finite simple non-abelian P and atomless Boolean ring R, or an ω -categorical characteristically simple non-abelian p-group for some p. **Theorem 1**. The completion G^c has uncountable cofinality if and only if Gis residually finite and the following properties hold:

1. In any series $I=G_0 < G_1 < ... < G_n = G$ with each G_i/G_{i-1} characteristically simple the highest infinite quotient G_m/G_{m-1} (with maximal m) is isomorphic to some Boolean power P^R with finite simple non-abelian P;

2. For any abelian cover $N_1 < N_2$ in the lattice of characteristic subgroups of G the G^c/N^c_2 -module N^c_2/N^c_1 does not have countable G^c/N^c_2 -cofinality.

Proposition 4. If the group G is locally soluble, then G^c has countable cofinality.

Theorem 2.

Let G be residually finite and let both G and G^c be ω -categorical. Then if G is soluble then both G and G^c are nilpotent-by-finite.

Observation. Under the assumptions above let $N_1 < N_2 < G$ be a cover in the lattice of characteristic subgroups of G. If G^c is ω -categorical and the closures N^c_1 and N^c_2 are definable in G^c then N^c_2/N^c_1 is abelian.

Proposition 5. If *G* is residually finite and G^c satisfies the same AE-sentences with *G* then there is a number *m* such that for any *g* from G^c any element of the minimal normal subgroup of G^c containing *g* is a product of < mconjugates of *g*

(G^c has finite conjugate spread).