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1



Bernays to Gödel, January 1931:

I have laid out a modified version of
von Neumann’s set theory which, first
of all, establishes a closer relation to the
ordinary logical processes of set forma-
tion, and furthermore eliminates var-
ious unnecessary deviations from Zer-
melo’s system and makes the formula-
tion of the axioms more easily under-
standable.
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Gödel, January 1931:

In case we adopt a type-free con-
struction of mathematics, as is done in
the axiom system of set theory, axioms
of cardinality (that is, axiom postulat-
ing the existence of sets of ever higher
cardinality) take the place of type ex-
tensions, and it follows that certain
arithmetic propositions that are unde-
cidable in Z [first-order Peano arith-
metic] become decidable by axioms of
cardinality, for example, by the axiom
that there exist sets whose cardinality is
greater than every αn, where α0 = ℵ0,
αn+1 = 2αn .
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The Axiomatization

I. Axioms of Extensionality

(1) ∀x(x ∈ a←→ x ∈ b) −→ a = b.

(2) ∀x(x η A←→ x η B) −→ A = B.

II. Axioms of Direct Construction
of Sets

(1) ∃a∀x(x /∈ a).

(2) ∀a∀b∃c∀x(x ∈ c←→ x ∈ a∨x = b).
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III. Axioms for Construction of Classes

a(1) ∀a∃A∀x(x η A←→ x = a).

a(2) ∀A∃B∀x(x η B ←→ ¬x η A).

a(3) ∀A∀B∃C
∀x(x η C ↔ x η A & x η B).

b(1) ∃A∀x
(x η A←→ ∃a∀y(y ∈ x←→ y = a)).

b(2) ∃A∀x
(x η A←→ ∃a∃b(a ∈ b & x = 〈a, b〉).

b(3) ∀A∃B∀x
(x η B ←→ ∃a∃b(x = 〈a, b〉 & a η A)).

c(1) ∀A∃B∀x(x η B ←→ ∃y(〈x, y〉 η A))

c(2) ∀A∃B∀a∀b
(〈a, b〉 ∈ B ←→ 〈b, a〉 ∈ A).

c(3) ∀A∃B∀a∀b∀c
(〈〈a, b〉, c〉 ∈ B −→ 〈a, 〈b, c〉〉 ∈ A).
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IV. Axiom of Choice

Every relation C has a subclass which
is a function and has the same domain.

V. Axioms Concerning the Representa-
tion of Classes by Sets

a. (Separation)
∀a∀A∃b∀x(x ∈ b←→ x ∈ a & x η A).
b. (Replacement)
If the domain of a one-to-one correspon-
dence is represented by a set, then so is
the range.
c. (Union)
∀a∃b∀x(x ∈ b←→ ∃y(y ∈ a & x ∈ y)).
d. (Power Set)
∀a∃b∀x(x ∈ b←→ x ⊆ a).

VI. Axiom of Infinity
There is a set in one-to-one correspon-
dence with a proper subclass.
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VII. Axiom of Foundation

∀A(∃x η A −→
∃b(b η A & ¬∃z(z ∈ b & z η A))).
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von Neumann’s axiom IV 2:

A class A is not (represented by) a
set exactly when there is a surjection of
A onto V .

von Neumann, 1925:

Axiom IV 2, finally, deviates quite
essentially from what Zermelo and
Fraenkel have, and indeed it is the dis-
tinctive feature of our axiomatization.
It is, to be sure, related in a certain
sense to the axioms of separation and
replacement, but it goes much further
. . . IV 2 occupies an altogether central
position in the axiom system; it several
cases it enables us to prove that a set is
“not too big”, and finally it yields the
well-ordering theorem.
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The Cumulative Hierarchy:

V0 = ∅; Vα+1 = P(Vα); and

Vδ =
⋃

α<δVα for limit ordinals δ .

With Foundation,
von Neumann’s axiom IV 2 ←→

Choice IV & Replacement Vb:

If A is (not represented by) a set,
then A is the union of the fibers A ∩
(Vα+1 − Vα) by Foundation which are
non-empty for arbitrarily large α by Re-
placement. But each such fiber can be
well-ordered and these well-orderings
can be put together, all by Choice, to
get a bijection between A and the class
On of all ordinals.
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Gödel’s axioms of inversion:

(B7) ∀A∃B∀x∀y∀z
(〈x, 〈y, z〉〉 ∈ B ←→ 〈y, 〈z, x〉〉 ∈ A) .

(B8) ∀A∃B∀x∀y∀z
(〈x, 〈y, z〉〉 ∈ B ←→ 〈x, 〈z, y〉〉 ∈ A) .
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Bernays’ Axiomatic Set Theory 1958:

Class variables but not quantified.

Class terms {x | ϕ(x)}.

The conversion scheme

ϕ(a)←→ a ∈ {x | ϕ(x)}.

A 1 Emptyset

A 2 a ∪ {b}

A 3
⋃

x∈a t(x) for operators t

A 4 Power set

A 5 Choice (for sets)

A 6 Infinity

A 7 Foundation (for sets)
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Reflection Principles

ZF Reflection Principle:

For any ZF formula ϕ(v1, . . . , vn)
and any ordinal β, there is a limit α > β
such that for any x1, . . . , xn ∈ Vα,

ϕ[x1, . . . , xn] iff ϕVα [x1, . . . , xn].

Bernays’ Restricted Schema:

ϕ→ ∃y(Trans(y) & ϕy).

Bernays’ Class Reflection Scheme:

ϕ(a1, . . . , an, A1, . . . , Ar) −→
∃y(Trans(y) &
ϕy(a1, . . . , an, A1 ∩ y, . . . , Ar ∩ y)).
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