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Bounded arithmetic

I Language L2 contains 0, 1, ≤, +, ×, #, | · |, b ·
2c.

|x | is dlog(x + 1)e, x#y is 2|x |·|y |.

I Quantifiers bounded by |t | called sharply bounded.
I Hierarchy of bounded formulae: the class Σ̂b

n contains
formulae of the form:

∃y1 < t1 ∀y2 < t2 . . .Qyn < tn ψ

with sharply bounded ψ. Π̂b
n is dual to Σ̂b

n.
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Bounded arithmetic (cont’d)

I Theory T n
2 consists of a finite base theory plus induction

for Σ̂b
n formulae.

I Sn
2 is like T n

2 but with conclusion of induction restricted to
lengths (i.e. elements in the range of | · |).

I S1
2 ⊆ T 1

1 ⊆ S2
2 ⊆ T 2

2 ⊆ S3
2 . . .

I S2 =
⋃

n Sn
2 =

⋃
n T n

2 .

These theories are studied for a number of reasons, e.g.
connections to computational complexity theory.
Major question: is there n such that S2 = Sn

2 .
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Collection

The collection principle BΣ1 is the scheme:

∀x < z ∃y ψ(x , y) ⇒ ∃w ∀x < z ∃y < w ψ(x , y)

for all bounded ψ (equivalently, for all ψ ∈ Σ1).

I BΣ1 is unprovable in S2 (Paris-Kirby), but all known proofs
require exponentiation. A long-standing open problem:
does S2 + ¬exp prove BΣ1?

I Sn
2 + ¬exp does not prove BΣ1 (folklore), but the

complexity of known unprovable instances grows with n.
I T + BΣ1 is Π2-conservative over T for any reasonably

strong T ⊆ S2 (Buss).
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Main result

The weak pigeonhole principle WPHP(Σ̂b
n) is the scheme:

“there is no Σ̂b
n-definable injection from [0, x2) into [0, x), for

x > 1”

Theorem
Let n ≥ 1. If Sn

2 6` WPHP(Σ̂b
n), then BΣ1 is not finitely

axiomatizable over Sn
2 . The same result holds with T n

2 in place
of Sn

2 .

Remark: some kind of assumption is needed for the theorem,
since if Sn

2 = S2, then BΣ1 is finitely axiomatizable over Sn
2 .

There are some results suggesting that our assumption about
WPHP is plausible.
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Structure of the proof
We need to show that under our assumption, given k ≥ n,
Sn

2 + B∃Π̂b
k does not imply BΣ1.

I Start with countable M |= Sn
2 containing an element a such

that WPHP(Σ̂b
n) fails at a and the elements

a,a#a,a#a#a . . . are cofinal in M.
I Build a cofinal Σ̂b

k+2-elementary extension of M to a
Σ̂b

k+3-maximal model (i.e., M+ such that M+ �Σ̂b
k+2

K |= Sn
2

implies M+ �Σ̂b
k+3

K ).

I This can be done so that M+ satisfies B∃Π̂b
k .

I Use the fact that WPHP still fails at a in M+ to show that
M+ cannot satisfy B∃Π̂b

k+2.
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Extending M to a maximal model

The construction of a Σ̂b
k+3-maximal extension M+ of M is

standard: build a chain

M �Σ̂b
k+2

M1 �Σ̂b
k+2

M2 �Σ̂b
k+2

. . .

adding a witness for some Σ̂b
k+3 formula at each step.

M+ is the union of that chain.

Preserving cofinality and B∃Π̂b
k is not difficult: by compactness

and some standard techniques from models of arithmetic, we
can actually guarantee that each Ms satisfies all of BΣ1.
B∃Π̂b

k is the amount that gets preserved in the union.
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Why M+ does not satisfy collection

In M+, any Σ̂b
k+3 formula ψ(x) is equivalent to “ψ(x) is

consistent with Sn
2 plus the Π̂b

k+2 diagram”.
Observation (Adamowicz, K. 2007): this consistency statement
can be expressed as a ∀Σ̂b

k+2 formula.

If M+ satisfies B∃Π̂b
k+2, then on each segment [0,d ], the

witness for “ψ(x) or there is an inconsistency proof from ψ(x)”
can be bounded. So, each Σ̂b

k+3 formula becomes equivalent
on [0,d ] to a Π̂b

k+3 formula .
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Why M+ does not satisfy collection (cont’d)

However (K., Thapen 2008): In a model of Sn
2 + ¬WPHP(Σ̂b

n),
it cannot happen that each Σ̂b

m formula is equivalent to a Π̂b
m

formula (“the polynomial hierarchy does not collapse”).
The proof is a diagonalization argument, similar to the proof of
an old theorem by Paris and Wilkie.

By analyzing the argument, one may see that it excludes even
equivalence of Σ̂b

m and Π̂b
m formulae on a sufficiently large

segment [0,d ]. Thus, M+ cannot satisfy B∃Π̂b
k+2. �
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