The Σ_1 collection principle over finite fragments of bounded arithmetic

Leszek Kołodziejczyk
Institute of Mathematics, University of Warsaw

Logic Colloquium 2008, Bern

Bounded arithmetic

▶ Language L_2 contains 0, 1, \leq , +, ×, #, $|\cdot|$, $\lfloor \frac{\cdot}{2} \rfloor$. |x| is $\lceil \log(x+1) \rceil$, x # y is $2^{|x| \cdot |y|}$.

Bounded arithmetic

- ▶ Language L_2 contains 0, 1, ≤, +, ×, #, $|\cdot|$, $\lfloor \frac{\cdot}{2} \rfloor$. |x| is $\lceil \log(x+1) \rceil$, x # y is $2^{|x| \cdot |y|}$.
- Quantifiers bounded by |t| called sharply bounded.
- ► Hierarchy of bounded formulae: the class $\hat{\Sigma}_n^b$ contains formulae of the form:

$$\exists y_1 < t_1 \, \forall y_2 < t_2 \dots Q y_n < t_n \, \psi$$

with sharply bounded ψ . $\hat{\Pi}_n^b$ is dual to $\hat{\Sigma}_n^b$.

▶ Theory T_2^n consists of a finite base theory plus induction for $\hat{\Sigma}_n^b$ formulae.

- ► Theory T_2^n consists of a finite base theory plus induction for $\hat{\Sigma}_n^b$ formulae.
- ▶ S_2^n is like T_2^n but with conclusion of induction restricted to lengths (i.e. elements in the range of $|\cdot|$).

- ► Theory T_2^n consists of a finite base theory plus induction for $\hat{\Sigma}_n^b$ formulae.
- ▶ S_2^n is like T_2^n but with conclusion of induction restricted to lengths (i.e. elements in the range of $|\cdot|$).
- $\blacktriangleright S_2^1 \subseteq T_1^1 \subseteq S_2^2 \subseteq T_2^2 \subseteq S_2^3 \dots$

- ► Theory T_2^n consists of a finite base theory plus induction for $\hat{\Sigma}_n^b$ formulae.
- ▶ S_2^n is like T_2^n but with conclusion of induction restricted to lengths (i.e. elements in the range of $|\cdot|$).
- $\triangleright S_2 = \bigcup_n S_2^n = \bigcup_n T_2^n.$

- ► Theory T_2^n consists of a finite base theory plus induction for $\hat{\Sigma}_n^b$ formulae.
- ▶ S_2^n is like T_2^n but with conclusion of induction restricted to lengths (i.e. elements in the range of $|\cdot|$).
- $\blacktriangleright S_2^1 \subseteq T_1^1 \subseteq S_2^2 \subseteq T_2^2 \subseteq S_2^3 \dots$
- $\triangleright S_2 = \bigcup_n S_2^n = \bigcup_n T_2^n.$

These theories are studied for a number of reasons, e.g. connections to computational complexity theory. Major question: is there n such that $S_2 = S_2^n$.

Collection

The collection principle $B\Sigma_1$ is the scheme:

$$\forall x < z \,\exists y \,\psi(x,y) \Rightarrow \exists w \,\forall x < z \,\exists y < w \,\psi(x,y)$$

for all bounded ψ (equivalently, for all $\psi \in \Sigma_1$).

Collection

The collection principle $B\Sigma_1$ is the scheme:

$$\forall x < z \,\exists y \,\psi(x,y) \Rightarrow \exists w \,\forall x < z \,\exists y < w \,\psi(x,y)$$

for all bounded ψ (equivalently, for all $\psi \in \Sigma_1$).

- BΣ₁ is unprovable in S₂ (Paris-Kirby), but all known proofs require exponentiation. A long-standing open problem: does S₂ + ¬ exp prove BΣ₁?
- ► $S_2^n + \neg$ exp does not prove $B\Sigma_1$ (folklore), but the complexity of known unprovable instances grows with n.
- ► $T + B\Sigma_1$ is Π_2 -conservative over T for any reasonably strong $T \subseteq S_2$ (Buss).

Main result

The weak pigeonhole principle $WPHP(\hat{\Sigma}_n^b)$ is the scheme: "there is no $\hat{\Sigma}_n^b$ -definable injection from $[0, x^2)$ into [0, x), for x > 1"

Main result

The weak pigeonhole principle $WPHP(\hat{\Sigma}_n^b)$ is the scheme: "there is no $\hat{\Sigma}_n^b$ -definable injection from $[0, x^2)$ into [0, x), for x > 1"

Theorem

Let $n \ge 1$. If $S_2^n \not\vdash WPHP(\hat{\Sigma}_n^b)$, then $B\Sigma_1$ is not finitely axiomatizable over S_2^n . The same result holds with T_2^n in place of S_2^n .

Main result

The weak pigeonhole principle $WPHP(\hat{\Sigma}_n^b)$ is the scheme: "there is no $\hat{\Sigma}_n^b$ -definable injection from $[0, x^2)$ into [0, x), for x > 1"

Theorem

Let $n \ge 1$. If $S_2^n \not\vdash WPHP(\hat{\Sigma}_n^b)$, then $B\Sigma_1$ is not finitely axiomatizable over S_2^n . The same result holds with T_2^n in place of S_2^n .

Remark: some kind of assumption is needed for the theorem, since if $S_2^n = S_2$, then $B\Sigma_1$ is finitely axiomatizable over S_2^n . There are some results suggesting that our assumption about *WPHP* is plausible.

We need to show that under our assumption, given $k \ge n$, $S_2^n + B \exists \hat{\Pi}_k^b$ does not imply $B\Sigma_1$.

▶ Start with countable $M \models S_2^n$ containing an element a such that $WPHP(\hat{\Sigma}_n^b)$ fails at a and the elements a, a#a, a#a#a... are cofinal in M.

- ▶ Start with countable $M \models S_2^n$ containing an element a such that $WPHP(\hat{\Sigma}_n^b)$ fails at a and the elements a, a#a, a#a#a... are cofinal in M.
- ▶ Build a cofinal $\hat{\Sigma}_{k+2}^b$ -elementary extension of M to a $\hat{\Sigma}_{k+3}^b$ -maximal model (i.e., M_+ such that $M_+ \preceq_{\hat{\Sigma}_{k+2}^b} K \models S_2^n$ implies $M_+ \preceq_{\hat{\Sigma}_{k+3}^b} K$).

- ▶ Start with countable $M \models S_2^n$ containing an element a such that $WPHP(\hat{\Sigma}_n^b)$ fails at a and the elements a, a#a, a#a#a... are cofinal in M.
- ▶ Build a cofinal $\hat{\Sigma}_{k+2}^b$ -elementary extension of M to a $\hat{\Sigma}_{k+3}^b$ -maximal model (i.e., M_+ such that $M_+ \preceq_{\hat{\Sigma}_{k+2}^b} K \models S_2^n$ implies $M_+ \preceq_{\hat{\Sigma}_{k+3}^b} K$).
- This can be done so that M₊ satisfies B∃⋂_k^b.

- ▶ Start with countable $M \models S_2^n$ containing an element a such that $WPHP(\hat{\Sigma}_n^b)$ fails at a and the elements a, a#a, a#a#a... are cofinal in M.
- ▶ Build a cofinal $\hat{\Sigma}_{k+2}^b$ -elementary extension of M to a $\hat{\Sigma}_{k+3}^b$ -maximal model (i.e., M_+ such that $M_+ \preceq_{\hat{\Sigma}_{k+2}^b} K \models S_2^n$ implies $M_+ \preceq_{\hat{\Sigma}_{k+3}^b} K$).
- ► This can be done so that M_+ satisfies $B \exists \hat{\Pi}_k^b$.
- ▶ Use the fact that WPHP still fails at a in M_+ to show that M_+ cannot satisfy $B \ni \hat{\Pi}_{k+2}^b$.

Extending *M* to a maximal model

The construction of a $\hat{\Sigma}_{k+3}^b$ -maximal extension M_+ of M is standard: build a chain

$$M \preceq_{\hat{\Sigma}_{k+2}^b} M_1 \preceq_{\hat{\Sigma}_{k+2}^b} M_2 \preceq_{\hat{\Sigma}_{k+2}^b} \dots$$

adding a witness for some $\hat{\Sigma}_{k+3}^b$ formula at each step. M_+ is the union of that chain.

Extending *M* to a maximal model

The construction of a $\hat{\Sigma}_{k+3}^b$ -maximal extension M_+ of M is standard: build a chain

$$M \preceq_{\hat{\Sigma}_{k+2}^b} M_1 \preceq_{\hat{\Sigma}_{k+2}^b} M_2 \preceq_{\hat{\Sigma}_{k+2}^b} \dots$$

adding a witness for some $\hat{\Sigma}_{k+3}^b$ formula at each step. M_+ is the union of that chain.

Preserving cofinality and $B \ni \hat{\Pi}_k^b$ is not difficult: by compactness and some standard techniques from models of arithmetic, we can actually guarantee that each M_s satisfies all of $B\Sigma_1$. $B \ni \hat{\Pi}_k^b$ is the amount that gets preserved in the union.

Why M_+ does not satisfy collection

In M_+ , any $\hat{\Sigma}_{k+3}^b$ formula $\psi(x)$ is equivalent to " $\psi(x)$ is consistent with S_2^n plus the $\hat{\Pi}_{k+2}^b$ diagram". Observation (Adamowicz, K. 2007): this consistency statement can be expressed as a $\forall \hat{\Sigma}_{k+2}^b$ formula.

Why M_+ does not satisfy collection

In M_+ , any $\hat{\Sigma}^b_{k+3}$ formula $\psi(x)$ is equivalent to " $\psi(x)$ is consistent with S^n_2 plus the $\hat{\Pi}^b_{k+2}$ diagram". Observation (Adamowicz, K. 2007): this consistency statement can be expressed as a $\forall \hat{\Sigma}^b_{k+2}$ formula.

If M_+ satisfies $B\exists \hat{\Pi}_{k+2}^b$, then on each segment [0,d], the witness for " $\psi(x)$ or there is an inconsistency proof from $\psi(x)$ " can be bounded. So, each $\hat{\Sigma}_{k+3}^b$ formula becomes equivalent on [0,d] to a $\hat{\Pi}_{k+3}^b$ formula .

Why M_+ does not satisfy collection (cont'd)

However (K., Thapen 2008): In a model of $S_2^n + \neg WPHP(\hat{\Sigma}_n^b)$, it cannot happen that each $\hat{\Sigma}_m^b$ formula is equivalent to a $\hat{\Pi}_m^b$ formula ("the polynomial hierarchy does not collapse"). The proof is a diagonalization argument, similar to the proof of an old theorem by Paris and Wilkie.

Why M_+ does not satisfy collection (cont'd)

However (K., Thapen 2008): In a model of $S_2^n + \neg WPHP(\hat{\Sigma}_n^b)$, it cannot happen that each $\hat{\Sigma}_m^b$ formula is equivalent to a $\hat{\Pi}_m^b$ formula ("the polynomial hierarchy does not collapse"). The proof is a diagonalization argument, similar to the proof of an old theorem by Paris and Wilkie.

By analyzing the argument, one may see that it excludes even equivalence of $\hat{\Sigma}_m^b$ and $\hat{\Pi}_m^b$ formulae on a sufficiently large segment [0, d]. Thus, M_+ cannot satisfy $B \exists \hat{\Pi}_{k+2}^b$. \Box