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MODEL THEORY OF PA IN 1980s

I Hájek, Kirby, McAloon, Paris, Pudlák: Combinatorial
properties of cuts, indicators, independence results.

I Barwise, Kaufmann, Kaye, Lessan, Macintyre, Ressayre,
Schlipf, Smoryński, Wilmers: Model theory of recursively
saturated structures. Resplendence. Expandability.
Automorphisms.

I Kotlarski, Krajewski, Lachlan, Murawski, Smith: Nonstandard
satisfaction classes.

I Abramson, Blass, Gaifman, Harrington, Mills, Schmerl, Wilkie:
Extensions. Definable types. Iterated ultrapowers. Lattices of
elementary submodels. Uncountable models with interesting
second-order properties.

I Harnik, Knight, Marker, Nadel, Pabion, Richard, Solovay:
Turing degrees. Scott sets. Presburger Arithmetic. Reducts.
Other...
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Schlipf, Smoryński, Wilmers: Model theory of recursively
saturated structures. Resplendence. Expandability.
Automorphisms.

I Kotlarski, Krajewski, Lachlan, Murawski, Smith: Nonstandard
satisfaction classes.

I Abramson, Blass, Gaifman, Harrington, Mills, Schmerl, Wilkie:
Extensions. Definable types. Iterated ultrapowers. Lattices of
elementary submodels. Uncountable models with interesting
second-order properties.

I Harnik, Knight, Marker, Nadel, Pabion, Richard, Solovay:
Turing degrees. Scott sets. Presburger Arithmetic. Reducts.
Other...



MODEL THEORY OF PA IN 1980s
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Henryk Kotlarski, Automorphisms of Countable Recursively
Saturated Models of PA: a Survey, Notre Dame Journal of Formal
Logic Volume 36, Number 4, 505-518 (1995)

Let me begin with the pre-history of the subject. The
question whether PA has a model with a nontrivial
automorphism (i.e., such that its elements cannot be
individualized) was due to Hasenjäger. It was solved
positively by Ehrenfeucht and Mostowski [3]. Their result
and the idea of indiscernibility is nowadays so well known
that Hodges [5] writes “today model theorists use it at
least once a week,” so let me omit the statement of the
Ehrenfeucht-Mostowski Theorem.
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THREE PAPERS ON EXTENDING AUTOMORPHISMS

1. Results on automorphisms of recursively saturated models of
PA, Fund. Math. 129 (1), 9-15 (1988).

2. On extending of automorphisms of models of Peano
arithmetic, Fund. Math. 149 (3), 245-263 (1996).

3. More on extending automorphisms of models of Peano
arithmetic, to appear in Fund. Math.



AUTOMORPHISMS OF COUNTABLE RECURSIVELY
SATURATED STRUCTURES

Let M be countable and recursively saturated.

Proposition

For every infinite A ∈ Def(M) there are a, b ∈ A such that a 6= b
and tp(a) = tp(b).

Proposition

For all a, b ∈M, if tp(a) = tp(b), then there is f ∈ Aut(M) such
that f (a) = b.

Proposition

|Aut(M)| = 2ℵ0 .
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WHAT IS SPECIAL ABOUT PA?
EHREFEUCHT-GAIFMAN LEMMA

Theorem
If M |= PA, f ∈ Aut(M), and f (a) 6= a, then f (a) /∈ Scl(a)1.

1Scl(a) is the definable closure of a in M.



AUTOMORPHIC IMAGES

Definition
For X ⊆M, a(X ) = |{f (X ) : f ∈ Aut(M)}|
Basic facts:

X ∈ Def0(M)⇒ a(X ) = 1

X ∈ Def(M)⇒ a(X ) ≤ ℵ0

a(X ) > ℵ0 ⇒ a(X ) = 2ℵ0 (Kueker-Reyes)
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a(X ) IN MODELS OF PA

Assumption from now on: M |= PA is countable and recursively
saturated

Theorem (Schmerl)

a. ∀X ⊆ M, a(X ) ∈ {1,ℵ0, 2ℵ0}
b. ∀X ∈ Def(M) \ Def0(M), a(X ) = ℵ0.
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Theorem (Kotlarski)

If f ∈ Aut(M) \ {id}, then for arbitrarily large a ∈ M,
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THE AUTOMORPHISM GROUP

M |= PA countable and recursively saturated, G = Aut(M).

Theorem (Kaye)

If H / G is closed then H = G{I} for some invariant I ⊆end M.
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[G : H] < 2ℵ0 .
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M arithmetically saturated iff cf(G ) > ℵ0.

Theorem (Enayat)

M is arithmetically saturated iff for each K ≺ M, then there is
f ∈ G such that fix(f ) ∼= K .
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THE SPECTRUM OF AUTOMORPHISM GROUPS.
CODING SSy(M) IN G .
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THE SPECTRUM OF AUTOMORPHISM GROUPS.
CODING (fragments of) Th(M) IN G .

Theorem (Nurkhaidarov)

There are countable arithmetically saturated M0, M1, M2, M3 such
that for all i , j < 4, SSy(Mi ) = SSy(Mj) and for i 6= j

Aut(Mi ) 6∼= Aut(Mj).

Theorem (Nurkhaidarov)

If M0 and M1 are arithmetically saturated and
Aut(M0) ∼= Aut(M1); then for every n < ω

(ω, SSy0(M0)2) |= RTn
2 iff (ω, SSy0(M1)) |= RTn

2.

2SSy0(M) = Rep(Th(M))
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THE FOUR MODELS OF NURKHAIDAROV

1. (ω, SSy0(M0)) |= ¬RT2
2 (Hirst).

2. (ω, SSy0(M1)) |= RT2
2 ∧ ¬RT3

2 (Seetapun, Slaman).

3. M2 6|= TA, (ω, SSy0(M2))) |= RT3
2 (folklore).

4. M3 |= TA.
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THE FIRST NEGLECTED CASE: NOT ARITHMETICALLY
SATURATED MODELS

Question
Do recursively saturated but not arithmetically saturated models
have the small index property?

Question
If M is recursively saturated but not arithmetically saturated, is
there f ∈ G such that [f ] is comeager?

Question
Let T be a completion of PA. Are there recursively saturated but
not arithmetically saturated models M0 and M1 of T such that
Aut(M0) 6∼= Aut(M1)?
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Psychologists assure us that tall people command more
attention and respect than short ones. In as
antropomorphic field as logic, it would follow that taller
concepts excite more imagination than shorter ones.
Thus, more is written about tall end extensions than
stubby cofinal ones, and asked for a preference between
tall and short models, most logicians would take the tall
choice. Such a high-minded strategy might work well in
the short run; but in the long run we must pay everything
its due.

C.Smoryński
Cofinal Extensions of Nonstandard Models of Arithmetic, 1981



THE SECOND NEGLECTED CASE: SHORT MODELS

Notation: M(a) = sup(Scl(a)) =
⋂
{K ≺end M : a ∈ K}

G (a) = Aut(M(a))

G � M(a) = {f � M(a) : f ∈ G{M(a)}}

Theorem (Shochat)

G � M(a) is not normal in G (a), it is dense in G (a), and

[G (a) : G � M(a)] = 2ℵ0 .

Question
Is G � M(a) maximal in G (a)?
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DIVERSITY AMONG SHORT MODELS

Theorem (Kotlarski)

There are ai : i < ω such that for i 6= j , M(ai ) 6∼= M(aj).

Theorem (Shochat)

There are a0, a1 such that G (a0) 6∼= G (a1) as topological groups.
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TOPOLOGY ON G (a)

Theorem (Shochat)

There are a0, a1 such that G (a0) 6∼= G (a1) as topological groups.

I
⋂
{H / G (a0) : H is closed } = G{M[a0]}

I
⋂
{H / G (a1) : H is closed } = {id}



DIGRESSION: STRONG NON-RECONSTRUCTION RESULT

Theorem (Schmerl)

Let A be an infinite linearly ordered structure. There is M |= PA,
|A| = |M| (and M is not recursively saturated) such that
Aut(A) ∼= Aut(M).



THE THIRD NEGLECTED CASE: EXTENDING
AUTOMORPHISMS TO COFINAL EXTENSIONS

Theorem (RK, Kotlarski)

If K ≺end M, f ∈ Aut(K , Cod(M/K )), then3 f = g � K for some
g ∈ Aut(M).

3With minor restrictions.
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THE DESCRIPTION PROPERTY

Definition
The extension K ≺cof M has the description property if for every
a ∈ M \ K there is a coded in M nested sequence 〈Ai : i < ω〉 of
K -finite sets such that

1. M |= a ∈ Ai for all i < ω;

2. For each K -finite B such that a ∈ B, there is an i < ω such
that Ai ⊆ B.

Theorem (RK, Kotlarski)

For each M, there are K0, K1 such that K0≺cof M ≺cof K1 and
both extensions have the description property.



Question
For a given M is there an N such that M ≺cof N has the
description property and SSy(M) = SSy(N)?

Question
For a given M, is there an N such that for each bounded
A ∈ Cod(N/M) there is a b ∈ M such that b codes A?



ISOLATED GAPS

Definition
If M ≺cof N and b ∈ N \M, then gapN(b) is non-isolated if there
are d < gap(b) < e ∈ N such that [d , e] ∩M = ∅





ISOLATED GAPS

Theorem (RK, Kotlarski)

Every cofinal extension has non-isolated gaps.

Theorem (RK, Kotlarski)

No extension with the description property has isolated gaps.

Question
Are there cofinal extensions with isolated gaps?
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