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The main result, a joint work with T. Slaman

I There is a low T -upper bound for the class of K -trivials

I A characterization of ideals in ∆0
2 degrees which have a low

T -upper bound



Definition
Let PA(B) denote the class of {0, 1}-valued B-DNR functions, i.e.
the class of functions f ∈ 2ω such that f (x) 6= Φx(B)(x) for all x .
If B is ∅ we simply speak of PA.

Definition
Let DNR(B) denote the class of B-DNR functions, i.e. the class
of functions f ∈ ωω such that f (x) 6= Φx(B)(x) for all x .
If B is ∅ we simply speak of DNR.

Definition (Simpson)

b << a means that every infinite tree T ⊆ 2<ω of degree ≤ b has
an infinite path of degree ≤ a.



Theorem (D. Scott and others)

The following conditions are equivalent:

1. a is a degree of a {0, 1}-DNR function

2. a >> 0

3. a is a degree of a complete extension of PA

4. a is a degree of a set separating some effectively inseparable
pair of r.e. sets.



Remark

1. PA is a kind of a “universal” Π0
1 class

2. {0, 1}-valued DNR functions are also called PA sets and
degrees >> 0 are called PA degrees.

3. (Simpson)
(a) The partial ordering << is dense
(b) a << b implies a < b.



Known facts
The class of PA degrees is closed upwards (it forms an upper
cone). The class of sets which have a PA degree has measure 0.

Remark
The first part gives an example of coding into PA sets, based on
Gödel incompleteness phenomenon.
(More on that later).



Definition
Let M be an infinite set and {m0,m1,m2, . . .} be an increasing list
of all members of M.

I If f ∈ 2ω then by Restr(f ,M) we denote g ∈ 2ω defined for
all i by g(i) = f (mi )

I Similarly, if A ⊆ 2ω then by Restr(A,M) we denote a class of
functions {g : g = Restr(f ,M) ∧ f ∈ A}.

(Idea: an analogue of a projection.)



Lemma (A.K.)

I For every Π0
1 class A ⊆ PA there is an infinite recursive set

M such that if A is nonempty then Restr(A,M) = 2ω,
i.e. for every g ∈ 2ω there is a function f ∈ A such that
Restr(f ,M) = g.

I For every Π0,B
1 class A ⊆ PA(B) there is an infinite recursive

set M such that if A is nonempty then Restr(A,M) = 2ω,
where (an index of) M can be found uniformly from an index
of A, i.e. it does not depend on B.

Remark

I This is basically Gödel incompleteness phenomenon

I It can be modified to a dynamic process, i.e. given an
effective sequence of Σ0

1 and Π0
1 events, we can close (i.e.

code) true Σ0
1 ones while leaving open true Π0

1 ones.



The Lemma is crucial for coding into members of (nonempty)
Π0

1 classes A which are subclasses of PA.

We may

I code either an individual set C (by Restr(A,M) = {C} )

I or nest another class E ⊆ 2ω (by Restr(A,M) = E )

Similarly with coding into members of nonempty Π0,B
1 classes

which are subclasses of PA(B).

Nesting in this way a Π0,C
1 class into a Π0,B

1 class we obtain

Π0,B⊕C
1 class.

Example

Z is a low set then there is a low PA set A such that Z ≤T A.



Algorithmic randomness

K denotes prefix-free Kolmogorov complexity
{Un : n ∈ ω} denotes a universal ML test
1-randomness (ML-randomness) and relativization

Schnorr (equivalent characterizations of 1-randomness):

For any set A, K (A � n) ≥ n + O(1), if and only if
A passes all ML-tests (equivalently, A /∈

⋂
n Un)



1-random sets

I form a Σ0
2 class of measure 1

I = {σ ∗ A : A /∈ Un & σ ∈ 2<ω} (any n)

Thus, up to a finite shift, 1-random sets are just members of a Π0
1

class (like Un).

We work with Π0
1 classes of positive measure (a kind of thick Π0

1

classes) which are in a sense universal for Π0
1 classes of positive

measure.

From any 1-random set it is possible to compute a DNR function
1-randomness is a special case of a diagonalization of some Σ0

1

objects (effective approximations in measure).



Algorithmic weakness

There are several notions of computational weakness related to
1-randomness

Definition

1. L denotes the class of sets which are low for 1-randomness,
i.e. sets A such that every 1-random set is also 1-random
relative to A.

2. K denotes the class of K -trivial sets, i.e. the class of sets A
such that for all n, K (A � n) ≤ K (0n) + O(1).

3. M denotes the class of sets that are low for K , i.e. sets A
such that for all σ, K (σ) ≤ KA(σ) + O(1).

4. A set A is a basis for 1-randomness if A ≤T Z for some Z
such that Z is 1-random relative to A. The collection of such
sets is denoted by B.



Theorem (Nies, Hirschfeldt, Stephan)

K = L = M = B

More precisely:

I Nies: L = M
I Hirschfeldt, Nies: K = M
I Hirschfeldt, Nies, Stephan: K = B

Four different characterizations of the same class!
However, these characterizations yield different information content



Basic facts about K
I K ⊆ ∆0

2

I K ⊆ L1 (i.e. K -trivials are low)

More precisely:

I Chaitin: K ⊆ ∆0
2

I A.K.: L ⊆ GL1 (thus, L = K ⊆ L1)

Nowadays there are easier ways to prove lowness of K -trivials

Theorem (Nies; Downey, Hirschfeldt, Nies, Stephan)

I r.e. K-trivial sets induce a Σ0
3 ideal in the r.e. T -degrees

I K-trivial sets induce an ideal in the ω-r.e. T -degrees
generated by its r.e. members (in fact, a Σ0

3 ideal in the ω-r.e.
T -degrees)



Theorem (Downey, Hirschfeldt, Nies, Stephan; Nies)

I There is an effective sequence {Be , de}e of all the r.e.
K-trivial sets and of constants such that each Be is K-trivial
via de

I There is no effective sequence {Be , ce}e of all the r.e. low for
K sets with appropriate constants

I There is no effective way to obtain from a pair (B, d), where
B is an r.e. set that is K-trivial via d, a constant c such that
B is low for K via c

I There is no effective listing of all the r.e. K-trivial sets
together with their low indices



Theorem (Nies)

For each low r.e. set B, there is an r.e. K-trivial set A such that
A �T B.

Thus, no low r.e. set can be a T -upper bound for the class K.

Comment
The proof uses Robinson low guessing technique which is
compatible for r.e. sets with a technique do what is cheap. Cheap

is defined

I either by a cost function in case of K -trivials,

I or by having a small measure in case of low for random sets.

However, in the more general case of ∆0
2 instead of r.e. sets, the

Robinson low guessing technique does not seem to be compatible
with a technique do what is cheap. In fact, it is not.



Since all K -trivials are low and every K -trivial set is recursive in
some r.e. K -trivial set, we have, as a corollary, that the ideal
(induced by) K is nonprincipal (in the ∆0

2 T -degrees)

A more general result.

Theorem (Nies)

For any effective listing {Be , ze}e of low r.e. sets and of their low
indices there is an r.e. K-trivial set A such that A �T Be for all e.

This result is, in fact, used to prove that there is no effective way
to obtain low indices of (r.e.) K -trivial sets



Theorem (Nies)

I There is a low2 r.e. set which is a T -upper bound for the
class of K-trivials.

I Any proper Σ0
3 ideal in the r.e. T -degrees has a low2 r.e.

T -upper bound

Question
Is there a low ∆0

2 T -upper bound for the class K ?



Theorem (Yates)

For any r.e. set A TFAE:

1. A′′ ≡T ∅′′

2. {x : Wx ≤T A} is a Σ0
3 set

3. the class {Wx : Wx ≤T A} is uniformly r.e.

Together with Nies’ result, we have the following characterization.

Fact
An ideal of r.e sets has a low2 r.e. T -upper bound if and only if
it is a subideal of a proper Σ0

3 ideal.

Open

A characterization of Σ0
3 ideals in the r.e. T -degrees for which

there is a low T -upper bound, not necessarily r.e.(!)
(similarly for ideals in ∆0

2 T -degrees)



Theorem (A.K., Slaman)

Let C be a Σ0
3 ideal in the r.e. T -degrees. Then TFAE:

1. there is a function F recursive in ∅′ which dominates all
partial functions recursive in any member of the ideal C,

2. there is a low T-upper bound for C

A slightly more general result.

Theorem (A.K., Slaman)

Let C be an ideal in ∆0
2 T-degrees. Then TFAE:

1. (a) C is contained in an ideal A which is generated by a
sequence of sets {An}n such that the sequence is uniformly
recursive in ∅′ and
(b) there is a function F recursive in ∅′ which dominates any
partial function recursive in any set with T-degree in A,

2. there is a low T-upper bound for C.



Corollary

There is a low T-upper bound for the class K (the class of
K-trivials).

Proof
Nies proved that the ideal (induced by) K is generated by its r.e.
members and r.e. K -trivial sets induce a Σ0

3 ideal in the r.e.
T -degrees.
A.K. and Terwijn proved that there is a function F recursive in ∅′
which dominates all partial functions recursive in any member of K
{Remark: Jump traceability of K -trivials is implicit in this result}.
Thus, Corollary follows from the previous Theorem.

Remark
Since every low set has a low PA set T -above it, low T -upper
bounds which are PA are the most general case in this
characterization.



The following lemma is the heart of the matter.

Lemma
Given a function F recursive in ∅′, there is a uniform way how to
obtain from a ∅′-index of a set A with the property that any partial
function recursive in A is dominated by F both a low set A∗ and
an index of lowness of A∗ such that A ≤T A∗,
i.e. there are recursive functions f , g such that if Φe(∅′) is total
and equal to some set A so that any partial function recursive in A
is dominated by F then Φf (e)(∅′) is a low set, g(e) is its lowness
index and A ≤T Φf (e)(∅′).



Comment.
In general, it is not possible to reach A ≤T A∗ uniformly in an
index of A, otherwise we would have a contradiction with a result
of Nies (no effective listing of K -trivials together with their low
indices).
Similarly, sets A∗ cannot be, in general, obtained uniformly as r.e.
sets.

Main idea
To combine forcing with Π0

1 classes (like Low Basis Theorem) with
coding sets into rich Π0

1 classes, namely into subclasses of PA.



Idea of the proof of the main lemma (given a function F recursive
in ∅′ and a set A with described properties).

An extremely simplified version : having a low index of A.

1. Code A into PA, and get a Π0,A
1 class

by Restr(PA,M) = {A}, where M is an infinite recursive set
used for coding,
or more generally, by Restr(PA,M) = PA(A)
(here we may repeat nesting, i.e. coding into PA(A) )

2. Apply relativized Low Basis Theorem to get a member of the
class.

A full version: we do not have a low index of A.



Missing low index of A is replaced by approximations provided by
F to A′-questions. Since (A∗)′ has to be uniformly recursive in ∅′,
our ∅′-construction of both A∗ and (A∗)′ cannot change any
decision about (A∗)′(x) that it has already made. A wrong
approximation to A′-question given by F leads eventually to a
conflict with coding of A. We have to keep all our commitments
about (A∗)′(x) that we have already made and we have to start
with a new coding strategy.
If A and F satisfy the given assumptions our method will guarantee
that the approximations given by F will be correct from some point
on, i.e. a coding strategy will eventually stabilize yielding A ≤T A∗.
Since we use Π0

1 subclasses of PA, we can always find a place for a
new coding strategy (i.e. for coding an infinitary information).
Here we substantially use the fact that (nonempty)

Π0
1 subclasses of PA are rich



We use terms:
ω-extendability and F -extendability of a string in a tree
(consider recursive trees yielding Π0

1 classes ⊆ PA or A-recursive

trees yielding Π0,A
1 classes ⊆ PA(A) ).

Shortly, strings may be ω-good, F (...)-good etc.

We always have to keep

I ω-extendability of our strings in our recursive trees
(trees for Π0

1 subclasses of PA )

I (only) F -extendability of these strings in A-recursive trees

(trees for Π0,A
1 subclasses of PA(A) ).

We explain the idea on a picture (first some notation).



Let G be a recursive function such that

lims G (α, s) = F (α) .

We build an A-partial recursive function H, such that whenever we
are in a real trouble, the value of H at such place will be greater
than the value of F .
Since F has to eventually dominate H, from some point on there is
no trouble at all and we win, i.e. a coding strategy will be stable
and F -extendability will be, in fact, ω-extendability.



F -good, ω-bad (F doesn’t know !)
in an A-recursive tree

still F -good, ω-bad (F doesn’t know !)
d∅ = extendability, H(..) = d∅ > F (..)

both F -bad, d0, d1 = extenadability
F (..) > d0, d1

F knows ! but A doesn’t know !

Wait for t0 with G (.., t0) > d0, d1

Here A knows !
We can synchronize ∅′ and A-construction
We start a new coding strategy here
Note: a finite injury is behind, A doesn’t
know efectively where this happens



This explains how to prove Lemma, i.e. how to deal with just one
fixed An.

To prove the main Theorem, i.e. to deal with all given sets An we
have to:
first, relativize Lemma and work with Π0,An

1 classes and,

second, subsequently nest all Π0,An
1 classes, i.e. at each step we

nest subsequent Π0,An
1 class into a previous one.

At each level of nesting there are only finitely many injuries and
our construction eventually reaches all goals.



As a corollary of a result of Nerode and Shore there is an exact
pair for the class K in ∆0

2 T -degrees.

Question

1. Is there an exact pair for the class K in the r.e. T -degrees?

2. Is there a low exact pair for the class K in the ∆0
2 T -degrees?

Comment
The desribed method (to produce a low T -upper bound) does not
seem to be easily applicable to produce low exact pairs for ideals in
question.
Example: there is no minimal pair of PA degrees below 0′.



Coding into 1-random sets

On the contrary to (Π0
1 classes of) PA sets, where we have

a coding place (coding bit)

for (Π0
1 classes of) 1-random sets we only have

a coding interval (Kučera-Gács coding).

Examples

I Any set A is T -reducible to a 1-random set Z (even wtt)
(A ≤wtt Z ≤T A⊕ ∅′), and

I {a : a ≥ 0′} ⊆ 1-random degrees.



R.sp., complexity of coding (into 1-random sets) is 0′. It agrees
with our intuition: it is not possible to arbitrarily code an infinite
information into 1-random objects keeping 1-randomness
(chaoticness).

1-random degrees are not closed upwards, or strongly :

Fact (Stephan)

1-random degrees an PA degrees coincide exactly on {a : a ≥ 0′}.

In a connection with low T -upper bounds for K -trivials there is a
very difficult and sharp question.



Question
Is there a low 1-random set which is a T -upper bound for
the class K ?

There is a very strong limitation on coding an r.e. set into
incomplete 1-random sets.

Theorem (Hirschfeldt, Nies, Stephan)

If B is r.e. and Z is 1-random such that B ≤T Z and Z �T ∅′
then Z is 1-random in B and, thus, B is K-trivial.

Thus, the only r.e. sets which may have incomplete 1-random set
T -above are K -trivials. (At least some nonrecursive of them do).



Corollary

Suppose A is both 1-random and a low T-upper bound for the
class K. Then r.e. K-trivials = {B : B is r.e. & B ≤T A}.

So, an existence of a low 1-random T -upper bound for the class K
would be a very strong result.

The mentioned limitation also indicates that to code an r.e.
K -trivial set into an incomplete 1-random set requires to use some
global dynamic property connected with K -triviality of a given set
(rather than to code an r.e. set bit by bit).



A weaker variant of the question (for just one fixed K -trivial).

Question
Does for any (r.e.) K -trivial set A exist an incomplete (e.g. low)
1-random set Y such that A ≤T Y ?

Apology

It is announced in my abstract that Barmpalias and Montalban
proved that any K -trivial set is T -below some low 1-random set.
Unfortunately, they found recently a gap in the construction.

The method of coding they used is interesting.



Theorem (Nies, Stephan; Kjos-Hanssen)

A set A is K-trivial if and only if for any Σ0,A
1 class UA of measure

< 1 there is a Σ0
1 class V of measure < 1 such that UA ⊆ V.

Definition
A ≤LR B if every set 1-random in B is also 1-random in A, i.e.
MLRB ⊆ MLRA.

Observe: K = L = {A : A ≤LR ∅}.

Theorem (Kjos-Hanssen)

A ≤LR B if and only if for any Σ0,A
1 class UA of measure < 1 there

is a Σ0,B
1 class VB of measure < 1 such that UA ⊆ VB .



This characterization gives some ”global dynamic property” of
K -trivials. R.sp., having UA ⊆ V, with measure of V < 1, V can
be used as a test for a confirmation that some σ is an initial
segment of A. This global bound V of measure < 1 can guarantee
that we can keep the measure of mistakes small.

The idea of Barmpalias and Montalban (to construct a low
1-random set T -above a given K -trivial set A) was based on this,
namely, UA ⊆ V ,
which enables to correct mistakes in approximations to A with
measure of mistakes small. It could eventually produce a
T -reduction of A to some low 1-random set. Unfortunately, there
is gap in the current version and it is not clear whether a much
more nonuniform version could work. So, it is open.



Opposite to lowness: highness.

Definition
LRH = {A : ∅′ ≤LR A} (LR-hard)

Definition (Diamond operator)

For a class H ⊆ 2ω let
H� = {A : A r .e. & ∀Z ∈ H ∩MLR(A ≤T Z )}

Obviously, H� induces an ideal in the r.e. T -degrees.
There are several subclasses of the r.e. T -degrees of the form H�

(more on that in Nies’ book: Computability and randomness).

Example

For H = LHR we have
LRH� = {A : A r .e. & ∀Z ∈ LRH ∩MLR(A ≤T Z )}



Theorem (Nies)

There is a 1-random set A ∈ LRH such that A <T ∅′.

Remark
Alternatively, the jump inversion technique for Π0

1 classes
(A.K. 1989: high incomplete 1-random) yields immediately also a
pseudo-jump inversion method and, thus, also produces a
1-random set A ∈ LRH such that A <T ∅′.
See: Simpson http://www.math.psu.edu/~simpson
paper: Mass Problems and Almost Everywhere Domination

(Other paper of Simpson is about LR-reducibility, almost
everywhere domination, a relation ∅′ ≤LR A, etc. is:
Almost Everywhere Domination and Superhighness.)

http://www.math.psu.edu/~simpson


Corollary

LRH� ⊆ K (in fact, LRH� ⊆ r.e. members of K)

Theorem (Hirschfeldt, Miller)

For every Σ0
3 null class C there is a nonrecursive r.e. set which is

T -below all 1-random sets in C.

Corollary (Hirschfeldt, Miller)

LRH� (a subclass of the r.e. members of K) contains also
nonrecursive r.e. sets.



LRH sets in PA

Theorem (A.K.)

I There is a PA set A, A <T ∅′, A ∈ LRH, (i.e. ∅′ ≤LR A)

I For every nonrecursive Z ≤T ∅′, there is a PA set A ∈ LRH
such that A <T ∅′ & A⊕ Z ≡T ∅′.

(2nd item: Posner-Robinson by incomplete PA sets from LRH )
Thus, the only sets T -below all LRH ∩ PA are computable.

Another interesting contrast of 1-random and PA sets:

Fact (Hirschfeldt)

Sets in LRH� are ML-noncuppable, i.e.
A ∈ LRH� → A⊕ Z <T ∅′ for all 1-random set Z <T ∅′.



Observe: there is no cone avoidance by 1-random members in LRH
(at least some nonrecursive r.e. K -trivials are T -below all
1-random LRH sets)

on the contrary to the case of (incomplete) PA sets in LRH
(we even have a variant of Posner-Robinson by incomplete PA sets
in LRH).

Question

I LHR� = r.e. members of K ?

I Are all K -trivials ML-noncuppable ?



Comment
Many obstacles in solving the above questions concerning
1-randomness are connected with a problem of coding an
information into 1-random sets.

While we can code an infinitary information into PA sets
(or into members of Π0

1 subclasses of PA),

coding an information into 1-random sets
(or into members of Π0

1 classes of positive measure)
is less powerful and it is still not completely understood.



The paper about low T -upper bounds of ideals is submitted to a
journal, a preprint can be found at

http://math.berkeley.edu/~slaman/papers
(a revised version will be available soon).

http://math.berkeley.edu/~slaman/papers


Thank you


