Axiomatic Theories of Truth

Graham Leigh

University of Leeds

LC'08, 8th July 2008

Graham Leigh (University of Leeds)

Axiomatic Theories of Truth

LC'08, 8th July 2008 1 / 15

- 31

イロト イポト イヨト イヨト

Formalising Truth

Definition (Language of truth)

We work in $\mathcal{L}_{\mathcal{T}}$ the language of Peano Arithmetic augmented with an additional predicate symbol \mathcal{T} . Let PA_T denote PA formulated in the language $\mathcal{L}_{\mathcal{T}}$.

The intuition is that T(x) denotes that x is (the Gödel number of) a "true" \mathcal{L}_T sentence.

Let $\lceil . \rceil$ provide a Gödel numbering of $\mathcal{L}_{\mathcal{T}}$.

イロト 不得下 イヨト イヨト

Formalising Truth

Definition (Language of truth)

We work in $\mathcal{L}_{\mathcal{T}}$ the language of Peano Arithmetic augmented with an additional predicate symbol \mathcal{T} . Let PA_T denote PA formulated in the language $\mathcal{L}_{\mathcal{T}}$.

The intuition is that T(x) denotes that x is (the Gödel number of) a "true" \mathcal{L}_T sentence.

Let $\lceil . \rceil$ provide a Gödel numbering of $\mathcal{L}_{\mathcal{T}}$.

- 4 同 6 4 日 6 4 日 6

Of course, by Tarski's Theorem the "ideal" axiom of truth, $T \sqcap A \urcorner \leftrightarrow A$ for all sentences A, is inconsistent with PA_T . However, there are ways in which we can overcome this inconsistency.

- Restrict the language so as to stop self-reference. For example allow $T^{r}A^{n} \leftrightarrow A$ for \mathcal{L}_{PA} .
- **(2)** Replace $T \cap A \cap H \to A$ with weaker, consistent, axioms.

We will consider case 2.

・ロト ・聞ト ・ ヨト ・ ヨト

Of course, by Tarski's Theorem the "ideal" axiom of truth, $T \sqcap A \urcorner \leftrightarrow A$ for all sentences A, is inconsistent with PA_T . However, there are ways in which we can overcome this inconsistency.

- Restrict the language so as to stop self-reference. For example allow $T^{r}A^{\gamma} \leftrightarrow A$ for \mathcal{L}_{PA} .
- ⓐ Replace $T^{\top}A^{\neg} \leftrightarrow A$ with weaker, consistent, axioms.

We will consider case 2.

- 本間 と 本語 と 本語 と

Of course, by Tarski's Theorem the "ideal" axiom of truth, $T \sqcap A \urcorner \leftrightarrow A$ for all sentences A, is inconsistent with PA_T . However, there are ways in which we can overcome this inconsistency.

- Restrict the language so as to stop self-reference. For example allow $T^{r}A^{r} \leftrightarrow A$ for \mathcal{L}_{PA} .
- **2** Replace $T \sqcap A \urcorner \leftrightarrow A$ with weaker, consistent, axioms.

We will consider case 2.

- 本間 と 本語 と 本語 と

Of course, by Tarski's Theorem the "ideal" axiom of truth, $T \sqcap A \urcorner \leftrightarrow A$ for all sentences A, is inconsistent with PA_T . However, there are ways in which we can overcome this inconsistency.

- Restrict the language so as to stop self-reference. For example allow $T^{r}A^{r} \leftrightarrow A$ for \mathcal{L}_{PA} .
- **2** Replace $T \cap A \cap A$ with weaker, consistent, axioms.

We will consider case 2.

- 4 週 ト - 4 三 ト - 4 三 ト

A Base for truth

Let $Base_T$ be the theory comprising of PA_T and the following axioms.

$$(T^{\Gamma}A \to B^{\neg} \land T^{\Gamma}A^{\neg}) \to T^{\Gamma}B^{\neg}.$$

2 $T(\mathbf{ucl} \square B \square)$ for all tautologies *B*.

() $T^{\top}A^{\neg}$ if A is a true primitive recursive atomic sentence.

where ucl(A) denotes the (Gödel number of the) universal closure of A.

・ 同 ト ・ ヨ ト ・ ヨ ト

Axioms of truth

Possible axioms, schema, and rules of inference we consider are $A \rightarrow T^{\Gamma}A^{\neg}$, $\neg (T^{\Gamma}A^{\neg} \land T^{\Gamma}\neg A^{\neg})$, $A/T^{\Gamma}A^{\neg}$, $T^{\Gamma}A^{\neg} \rightarrow A$, $T^{\Gamma}A^{\neg} \lor T^{\Gamma}\neg A^{\neg}$, $T^{\Gamma}A^{\neg}A$, $T^{\Gamma}A^{\neg} \rightarrow T^{\Gamma}T^{\Gamma}A^{\neg\gamma}$, $\forall n T^{\Gamma}A\dot{n}^{\gamma} \rightarrow T^{\Gamma}\forall x Ax^{\gamma}$, $\neg A/\neg T^{\Gamma}A^{\gamma}$, $T^{\Gamma}T^{\Gamma}A^{\gamma\gamma} \rightarrow T^{\Gamma}A^{\gamma}$, $T^{\Gamma}\exists x Ax^{\gamma} \rightarrow \exists n T^{\Gamma}A\dot{n}^{\gamma}$, $\neg T^{\Gamma}A^{\gamma}/\neg A$.

These axioms were considered by Harvey Freidman and Michael Sheard in *An axiomatic approach to self-referential truth* [2]. They classified the above axioms and rules into nine maximally consistent

Graham Leigh (University of Leeds)

Axioms of truth

Possible axioms, schema, and rules of inference we consider are $A \rightarrow T^{\Gamma}A^{\neg}$, $\neg(T^{\Gamma}A^{\neg} \land T^{\Gamma}\neg A^{\neg})$, $A/T^{\Gamma}A^{\neg}$, $T^{\Gamma}A^{\neg} \rightarrow A$, $T^{\Gamma}A^{\neg} \lor T^{\Gamma}\neg A^{\neg}$, $T^{\Gamma}A^{\neg}A$, $T^{\Gamma}A^{\neg} \rightarrow T^{\Gamma}T^{\Gamma}A^{\neg}$, $\forall n T^{\Gamma}A\dot{n}^{\gamma} \rightarrow T^{\Gamma}\forall x Ax^{\gamma}$, $\neg A/\neg T^{\Gamma}A^{\gamma}$, $T^{\Gamma}T^{\Gamma}A^{\neg\gamma} \rightarrow T^{\Gamma}A^{\gamma}$, $T^{\Gamma}\exists x Ax^{\gamma} \rightarrow \exists n T^{\Gamma}A\dot{n}^{\gamma}$, $\neg T^{\Gamma}A^{\gamma}/\neg A$.

These axioms were considered by Harvey Freidman and Michael Sheard in *An axiomatic approach to self-referential truth* [2]. They classified the above axioms and rules into nine maximally consistent

sets.

Lower bounds

U-Inf: $\forall n \ T \ A \dot{n} \ \rightarrow \ T \ \forall x \ A x^{\neg}$ T-Elim: $T \cap A \cap A$ T-Del· $T \cap T \cap A \cap A \to T \cap A \cap$ T-Intro: $A/T^{\Box}A^{\Box}$

Definition

Let S_1 be $Base_T + U$ -Inf + T-Elim, and S_2 be $Base_T$ + U-Inf + T-Del + T-Intro + T-Elim. Denote by $I(\alpha)$ the formula $\forall \ulcorner A \urcorner T \ulcorner TI(\dot{\alpha}, \dot{A}) \urcorner$.

U-Inf: $\forall n \ T^{\top} A \dot{n}^{\neg} \rightarrow T^{\top} \forall x \ A x^{\neg}$ T-Elim: $T \cap A \cap A$ T-Del· $T \cap T \cap A \cap A \to T \cap A \cap$ T-Intro: $A/T^{\Box}A^{\Box}$

Definition

Let S_1 be $Base_T + U$ -Inf + T-Elim, and S_2 be $Base_T$ + U-Inf + T-Del + T-Intro + T-Elim. Denote by $I(\alpha)$ the formula $\forall \ulcorner A \urcorner T \urcorner \mathsf{TI}(\dot{\alpha}, \dot{A}) \urcorner$.

Sheard proved (in [4]) that $S_1 \vdash \forall \alpha$. $I(\alpha) \rightarrow I(\epsilon_{\alpha})$. Moreover he showed $|S_1| = \varphi 20.$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

U-Inf: $\forall n \ T^{\top} A \dot{n}^{\neg} \rightarrow T^{\top} \forall x \ A x^{\neg}$ T-Elim: $T \cap A \cap A$ T-Del· $T \cap T \cap A \cap A \to T \cap A \cap$ T-Intro: $A/T^{\Box}A^{\Box}$

Definition

Let S_1 be $Base_T + U$ -Inf + T-Elim, and S_2 be $Base_T$ + U-Inf + T-Del + T-Intro + T-Elim. Denote by $I(\alpha)$ the formula $\forall \ulcorner A \urcorner T \ulcorner TI(\dot{\alpha}, \dot{A}) \urcorner$.

Sheard proved (in [4]) that $S_1 \vdash \forall \alpha$. $I(\alpha) \rightarrow I(\epsilon_{\alpha})$. Moreover he showed $|S_1| = \varphi 20.$ We have shown $S_2 \vdash \forall \alpha$. $I(\alpha) \rightarrow I(\varphi n\alpha)$ for each *n*.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

U-Inf: $\forall n \ T^{\top}A\dot{n}^{\neg} \rightarrow T^{\top}\forall x \ Ax^{\neg}$	T-Elim: $T^{\Gamma}A^{\gamma}/A$
$T\text{-}Del: \ T^{\sqcap}T^{\sqcap}A^{\urcorner} \to T^{\sqcap}A^{\urcorner}$	T-Intro: $A/T^{\Box}A^{\Box}$

Definition

Let S_1 be $Base_T + U$ -Inf + T-Elim, and S_2 be $Base_T$ + U-Inf + T-Del + T-Intro + T-Elim. Denote by $I(\alpha)$ the formula $\forall \neg A \neg T \neg T | (\dot{\alpha}, \dot{A}) \neg$.

Sheard proved (in [4]) that $S_1 \vdash \forall \alpha$. $I(\alpha) \rightarrow I(\epsilon_{\alpha})$. Moreover he showed $|S_1| = \varphi 20.$ We have shown $S_2 \vdash \forall \alpha$. $I(\alpha) \rightarrow I(\varphi n\alpha)$ for each *n*.

Proof. (Sketch).

From $\vdash \forall \alpha. \ I(\alpha) \rightarrow I(\varphi n \alpha)$ we get $\vdash \operatorname{Prog}_{\beta} I(\varphi n' \beta)$ (with U-Inf). Thus,

U-Inf: $\forall n \ T^{\top}A\dot{n}^{\neg} \rightarrow T^{\top}\forall x \ Ax^{\neg}$ T-Elim: $T^{\top}A^{\neg}/A$ T-Del· $T \cap T \cap A \cap A \to T \cap A \cap$ T-Intro: $A/T \cap A^{\neg}$

Definition

Let S_1 be $Base_T + U - Inf + T - Elim$, and S_2 be $Base_T$ + U-Inf + T-Del + T-Intro + T-Elim. Denote by $I(\alpha)$ the formula $\forall \ulcorner A \urcorner T \ulcorner TI(\dot{\alpha}, \dot{A}) \urcorner$.

Sheard proved (in [4]) that $S_1 \vdash \forall \alpha$. $I(\alpha) \rightarrow I(\epsilon_{\alpha})$. Moreover he showed $|S_1| = \varphi 20.$ We have shown $S_2 \vdash \forall \alpha$. $I(\alpha) \rightarrow I(\varphi n\alpha)$ for each *n*.

Proof. (Sketch).

From $\vdash \forall \alpha. \ I(\alpha) \rightarrow I(\varphi n \alpha)$ we get $\vdash \operatorname{Prog}_{\beta} I(\varphi n' \beta)$ (with U-Inf). Thus, $\vdash \forall \alpha. \mathsf{Tl}_{\beta}(\alpha, I(\varphi n'\beta)) \rightarrow I(\varphi n'\alpha)$. Now by T-Intro, axioms of *Base*_T and

U-Inf: $\forall n \ T^{\top}A\dot{n}^{\neg} \rightarrow T^{\top}\forall x \ Ax^{\neg}$	T-Elim: $T^{\Gamma}A^{\gamma}/A$
$T\text{-}Del: \ T^{\sqcap}T^{\sqcap}A^{\urcorner} \to T^{\sqcap}A^{\urcorner}$	T-Intro: $A/T^{\Box}A^{\Box}$

Definition

Let S_1 be $Base_{\tau} + U - Inf + T - Elim$. and S_2 be $Base_T$ + U-Inf + T-Del + T-Intro + T-Elim. Denote by $I(\alpha)$ the formula $\forall \ulcorner A \urcorner T \ulcorner TI(\dot{\alpha}, \dot{A}) \urcorner$.

Sheard proved (in [4]) that $S_1 \vdash \forall \alpha$. $I(\alpha) \rightarrow I(\epsilon_{\alpha})$. Moreover he showed $|S_1| = \varphi 20.$ We have shown $S_2 \vdash \forall \alpha$. $I(\alpha) \rightarrow I(\varphi n\alpha)$ for each *n*.

Proof. (Sketch).

From $\vdash \forall \alpha$. $I(\alpha) \rightarrow I(\varphi n \alpha)$ we get $\vdash \operatorname{Prog}_{\beta} I(\varphi n' \beta)$ (with U-Inf). Thus, $\vdash \forall \alpha. \mathsf{TI}_{\beta}(\alpha, I(\varphi n'\beta)) \rightarrow I(\varphi n'\alpha)$. Now by T-Intro, axioms of $Base_{\mathcal{T}}$ and T-Del we have $\vdash \forall \alpha$. $T^{\top} \mathsf{Tl}_{\beta}(\alpha, I(\varphi n'\beta))^{\neg} \rightarrow I(\varphi n'\alpha)$. П

	Ordinal Anal	yses	Infinitary	' Theories
U-Inf: $\forall n \ T^{\top}A\dot{n}^{\neg} \rightarrow$	$T \ulcorner \forall x Ax \urcorner$	T-	Elim:	$T^{\Gamma}A^{\gamma}/A$
T-Del: $T^{\Box}T^{\Box}A^{\Box} \rightarrow$	$T^{\sqcap}A^{\urcorner}$	T-	Intro:	$A/T^{\Box}A^{\Box}$

Definition (Inductive Definition of S_2^{∞})

Define
$$S_2^{\infty} \Big|_k^{\alpha,n} \Gamma$$
 by (Ax.1), (\wedge), (\vee_i), (ω), (\exists) and
(Cut). If $\Big|_k^{\alpha,n} \Gamma, A$, $\Big|_k^{\delta,n} \Gamma, \neg A$ and $|A| < k$ then $\Big|_k^{\beta,n} \Gamma$,
(Ax.2.). $\Big|_k^{\alpha,n} \Gamma, \neg T(A), T(A)$,
(Ax.3.). $\Big|_k^{\alpha,n} \Gamma, \neg T(A)$ if A is not an \mathcal{L}_T -sentence,
(T-Intro). If $\Big|_k^{\alpha,n} A$ and $n < m$ then $\Big|_k^{\beta,m} \Gamma, T(A)$,
(T-Imp). If $\Big|_k^{\alpha,n} \Gamma, T(A), \Big|_k^{\delta,n} \Gamma, T(A \to B)$) then $\Big|_k^{\beta,n} \Gamma, T(B),$
(T-Del). If $\Big|_k^{\alpha,n} \Gamma, T^{\Gamma}T(A)^{\neg}$ then $\Big|_k^{\beta,n} \Gamma, T(A),$
(T-U-Inf). If $\Big|_k^{\alpha,n} \Gamma, T^{\Gamma}A\dot{m}^{\neg}$ for all $m, \Big|_k^{\beta,n} \Gamma, T(\forall x Ax),$
if $\alpha, \delta < \beta$.

	Ordinal Analyses		Infinitary Theories	
U-Inf: $\forall n \ T^{\top}A\dot{n}^{\neg} \rightarrow$	$T \sqcap \forall x A x \urcorner$	T-	Elim:	$T^{\Gamma}A^{\gamma}/A$
T-Del: $T^{\Box}T^{\Box}A^{\Box} \rightarrow$	$T^{-}A^{-}$	T-	Intro:	$A/T^{\Box}A^{\Box}$

Definition (Inductive Definition of S_2^{∞})

Define
$$S_{2}^{\infty} \left| \frac{\alpha, n}{k} \right|^{\alpha, n} \Gamma$$
 by (Ax.1), (\wedge), (\vee_{i}), (ω), (\exists) and
(Cut). If $\left| \frac{\alpha, n}{k} \right|^{\alpha, n} \Gamma, A$, $\left| \frac{\delta, n}{k} \right|^{\alpha, n} \Gamma, \neg A$ and $|A| < k$ then $\left| \frac{\beta, n}{k} \right|^{\alpha, n} \Gamma$,
(Ax.2.). $\left| \frac{\alpha, n}{k} \right|^{\alpha, n} \Gamma, \neg T(A), T(A),$
(Ax.3.). $\left| \frac{\alpha, n}{k} \right|^{\alpha, n} \Gamma, \neg T(A)$ if A is not an \mathcal{L}_{T} -sentence,
(T-Intro). If $\left| \frac{\alpha, n}{k} \right|^{\alpha, n} A$ and $n < m$ then $\left| \frac{\beta, m}{k} \right|^{\alpha, m} \Gamma, T(A),$
(T-Imp). If $\left| \frac{\alpha, n}{k} \right|^{\alpha, n} \Gamma, T(A), \left| \frac{\delta, n}{k} \right|^{\alpha, n} \Gamma, T(A \to B)$ then $\left| \frac{\beta, n}{k} \right|^{\alpha, n} \Gamma, T(B),$
(T-Del). If $\left| \frac{\alpha, n}{k} \right|^{\alpha, n} \Gamma, T^{\Gamma} A \dot{m}^{\gamma}$ for all m , $\left| \frac{\beta, n}{k} \right|^{\alpha, n} \Gamma, T(\forall x A x),$
if $\alpha, \delta < \beta$.

	Ordinal Analyses		Infinitary Theories	
U-Inf: $\forall n \ T^{\top}A\dot{n}^{\neg} \rightarrow$	$T \sqcap \forall x A x \urcorner$	T-	Elim:	$T^{\Gamma}A^{\gamma}/A$
T-Del: $T^{\Box}T^{\Box}A^{\Box} \rightarrow$	$T^{-}A^{-}$	T-	Intro:	$A/T^{\Box}A^{\Box}$

Definition (Inductive Definition of S_2^{∞})

Define
$$S_2^{\infty} \Big|_k^{\alpha,n} \Gamma$$
 by (Ax.1), (\wedge), (\vee_i), (ω), (\exists) and
(Cut). If $\Big|_k^{\alpha,n} \Gamma, A$, $\Big|_k^{\delta,n} \Gamma, \neg A$ and $|A| < k$ then $\Big|_k^{\beta,n} \Gamma$,
(Ax.2.). $\Big|_k^{\alpha,n} \Gamma, \neg T(A), T(A)$,
(Ax.3.). $\Big|_k^{\alpha,n} \Gamma, \neg T(A)$ if A is not an \mathcal{L}_T -sentence,
(T-Intro). If $\Big|_k^{\alpha,n} A$ and $n < m$ then $\Big|_k^{\beta,m} \Gamma, T(A)$,
(T-Imp). If $\Big|_k^{\alpha,n} \Gamma, T(A), \Big|_k^{\delta,n} \Gamma, T(A \to B)$) then $\Big|_k^{\beta,n} \Gamma, T(B),$
(T-Del). If $\Big|_k^{\alpha,n} \Gamma, T^{\Gamma}T(A)^{\gamma}$ then $\Big|_k^{\beta,n} \Gamma, T(A),$
(T-U-Inf). If $\Big|_k^{\alpha,n} \Gamma, T^{\Gamma}A\dot{m}^{\gamma}$ for all $m, \Big|_k^{\beta,n} \Gamma, T(\forall x Ax),$
f $\alpha, \delta < \beta$.

	Ordinal Analyses		Infinitary Theories	
U-Inf: $\forall n \ T^{\top}A\dot{n}^{\neg} \rightarrow$	$T \sqcap \forall x A x \urcorner$	T-	Elim:	$T^{\Gamma}A^{\gamma}/A$
T-Del: $T^{\Box}T^{\Box}A^{\Box} \rightarrow$	$T^{-}A^{-}$	T-	Intro:	$A/T^{\Box}A^{\Box}$

Definition (Inductive Definition of S_2^{∞})

Define
$$S_2^{\infty} \Big|_k^{\alpha,n} \Gamma$$
 by (Ax.1), (\wedge), (\vee_i), (ω), (\exists) and
(Cut). If $\Big|_k^{\alpha,n} \Gamma, A$, $\Big|_k^{\delta,n} \Gamma, \neg A$ and $|A| < k$ then $\Big|_k^{\beta,n} \Gamma$,
(Ax.2.). $\Big|_k^{\alpha,n} \Gamma, \neg T(A), T(A)$,
(Ax.3.). $\Big|_k^{\alpha,n} \Gamma, \neg T(A)$ if A is not an \mathcal{L}_T -sentence,
(T-Intro). If $\Big|_k^{\alpha,n} A$ and $n < m$ then $\Big|_k^{\beta,m} \Gamma, T(A)$,
(T-Imp). If $\Big|_k^{\alpha,n} \Gamma, T(A), \Big|_k^{\delta,n} \Gamma, T(A \to B)$) then $\Big|_k^{\beta,n} \Gamma, T(B),$
(T-Del). If $\Big|_k^{\alpha,n} \Gamma, T^{\Gamma}T(A)^{\gamma}$ then $\Big|_k^{\beta,n} \Gamma, T(A),$
(T-U-Inf). If $\Big|_k^{\alpha,n} \Gamma, T^{\Gamma}A\dot{m}^{\gamma}$ for all $m, \Big|_k^{\beta,n} \Gamma, T(\forall \times Ax),$
f $\alpha, \delta < \beta$.

	Ordinal Anal	yses	Infinitary	' Theories
U-Inf: $\forall n \ T^{\top}A\dot{n}^{\neg} \rightarrow$	$T \ulcorner \forall x Ax \urcorner$	T-	Elim:	$T^{\Gamma}A^{\gamma}/A$
T-Del: $T^{\Box}T^{\Box}A^{\Box} \rightarrow$	$T^{\sqcap}A^{\urcorner}$	T-	Intro:	$A/T^{\Box}A^{\Box}$

Definition (Inductive Definition of S_2^{∞})

Define
$$S_2^{\infty} \Big|_k^{\alpha,n} \Gamma$$
 by (Ax.1), (\wedge), (\vee_i), (ω), (\exists) and
(Cut). If $\Big|_k^{\alpha,n} \Gamma, A$, $\Big|_k^{\delta,n} \Gamma, \neg A$ and $|A| < k$ then $\Big|_k^{\beta,n} \Gamma$,
(Ax.2.). $\Big|_k^{\alpha,n} \Gamma, \neg T(A), T(A)$,
(Ax.3.). $\Big|_k^{\alpha,n} \Gamma, \neg T(A)$ if A is not an \mathcal{L}_T -sentence,
(T-Intro). If $\Big|_k^{\alpha,n} A$ and $n < m$ then $\Big|_k^{\beta,m} \Gamma, T(A)$,
(T-Imp). If $\Big|_k^{\alpha,n} \Gamma, T(A), \Big|_k^{\delta,n} \Gamma, T(A \to B)$) then $\Big|_k^{\beta,n} \Gamma, T(B),$
(T-Del). If $\Big|_k^{\alpha,n} \Gamma, T^{\Gamma}T(A)^{\neg}$ then $\Big|_k^{\beta,n} \Gamma, T(A),$
(T-U-Inf). If $\Big|_k^{\alpha,n} \Gamma, T^{\Gamma}A\dot{m}^{\neg}$ for all $m, \Big|_k^{\beta,n} \Gamma, T(\forall x Ax),$
f $\alpha, \delta < \beta$.

Definition

The rank of A, |A|, is defined as follows.

- |A| = 0 if A is an arithmetical literal or T(s) for some term s.
- $|A \wedge B| = |A \vee B| = |\forall x A| = |\exists x A| = |A| + 1.$

Theorem

Cut Elimination

$$S_2^{\infty} |_{k+1}^{\alpha, n} \Gamma \text{ implies } S_2^{\infty} |_k^{\omega^{\alpha}, n} \Gamma$$

3

- 4 同 6 4 日 6 4 日 6

For each n > 0 and α define

$$\mathfrak{M}_{n,\alpha} = \left\langle \mathsf{N}, \{ [B]: S_2^{\infty} | \frac{\alpha_0, m}{0} B \text{ for some } m < n \text{ and } \alpha_0 < \alpha \} \right\rangle$$

and define $\mathfrak{M}_{0,\alpha} = \langle \mathbf{N}, \emptyset \rangle$.

Lemma

For each *n* define $f_n(\alpha) = \varphi n(\varphi 1 \alpha)$. Then for every $n < \omega$ we have a If $\left| \frac{\alpha, n}{0} \right| \Gamma$ then $\mathfrak{M}_{n, f_n(\alpha)} \models \Gamma$. If $\left| \frac{\alpha, n}{0} \right| T^{\Gamma} A^{\Gamma}$ then $\left| \frac{f_n(\alpha), p}{0} \right| A$ for some p < n. If $\left| \frac{\alpha, n}{k} \right| \Gamma$ then $\left| \frac{\varphi 1 \alpha, n}{0} \right| \Gamma$.

Corollary

If $\alpha < \varphi \omega 0$ then $\mid_{0}^{\alpha,n} T^{\sqcap} A^{\sqcap}$ implies $\mid_{0}^{\beta,n} A$ for some $\beta < \varphi \omega 0$.

Graham Leigh (University of Leeds)

イロト イポト イヨト イヨト 二日

For each n > 0 and α define

$$\mathfrak{M}_{n,\alpha} = \left\langle \mathsf{N}, \{ \ulcorner B \urcorner : S_2^{\infty} | \frac{\alpha_0, m}{0} B \text{ for some } m < n \text{ and } \alpha_0 < \alpha \} \right\rangle$$

and define $\mathfrak{M}_{0,\alpha} = \langle \mathbf{N}, \emptyset \rangle.$

Lemma

For each *n* define $f_n(\alpha) = \varphi n(\varphi 1 \alpha)$. Then for every $n < \omega$ we have a If $\left| \frac{\alpha, n}{0} \right| \Gamma$ then $\mathfrak{M}_{n, f_n(\alpha)} \models \Gamma$. If $\left| \frac{\alpha, n}{0} \right| T^{\Gamma} A^{\Gamma}$ then $\left| \frac{f_n(\alpha), p}{0} \right| A$ for some p < n. If $\left| \frac{\alpha, n}{k} \right| \Gamma$ then $\left| \frac{\varphi^{1\alpha}, n}{0} \right| \Gamma$.

Corollary

If $\alpha < \varphi \omega 0$ then $\mid \frac{\alpha, n}{0} T^{\top} A^{\neg}$ implies $\mid \frac{\beta, n}{0} A$ for some $\beta < \varphi \omega 0$.

Graham Leigh (University of Leeds)

For each n > 0 and α define

$$\mathfrak{M}_{n,\alpha} = \left\langle \mathsf{N}, \{ \ulcorner B \urcorner : S_2^{\infty} | \frac{\alpha_0, m}{0} B \text{ for some } m < n \text{ and } \alpha_0 < \alpha \} \right\rangle$$

and define $\mathfrak{M}_{0, \alpha} = \langle \mathbf{N}, \emptyset \rangle.$

Lemma

For each *n* define $f_n(\alpha) = \varphi n(\varphi 1 \alpha)$. Then for every $n < \omega$ we have If $\left| \frac{\alpha, n}{0} \right| \Gamma$ then $\mathfrak{M}_{n, f_n(\alpha)} \models \Gamma$. If $\left| \frac{\alpha, n}{0} \right| T^{\Gamma} A^{\Gamma}$ then $\left| \frac{f_n(\alpha), p}{0} \right| A$ for some p < n. If $\left| \frac{\alpha, n}{k} \right| \Gamma$ then $\left| \frac{\varphi 1 \alpha, n}{0} \right| \Gamma$.

Corollary

If
$$\alpha < \varphi \omega 0$$
 then $|_{0}^{\alpha,n} T^{\neg} A^{\neg}$ implies $|_{0}^{\beta,n} A$ for some $\beta < \varphi \omega 0$.

Thus, we have

Lemma

If
$$S_2 \vdash A$$
 then $S_2^{\infty} |_{\overline{0}}^{\alpha,n} A$ for some $\alpha < \varphi \omega 0$.

and

Theorem

Let A be an arithmetical sentence, then $S_2 \vdash A$ implies $PA + TI(\langle \varphi \omega 0) \vdash A$.

Hence

```
Corollary (T-Elimination for S_2^{\infty})
|S_2| = \varphi \omega 0.
```

Thus, we have

Lemma

If
$$S_2 \vdash A$$
 then $S_2^{\infty \mid \frac{\alpha, n}{0}} A$ for some $\alpha < \varphi \omega 0$.

and

Theorem

Let A be an arithmetical sentence, then $S_2 \vdash A$ implies $PA + TI(\langle \varphi \omega 0) \vdash A$.

Hence

```
Corollary (T-Elimination for S_2^{\infty})
|S_2| = \varphi \omega 0.
```

- 本語 医 本 医 医 一 医

U-Inf: $\forall n \ T^{\Gamma} A \dot{n}^{\gamma} \rightarrow T^{\Gamma} \forall x \ A x^{\gamma}$, T-Elim: $T^{\Gamma} A^{\gamma} / A$, T-Cons: T-Del: $T^{\Gamma} T^{\Gamma} A^{\gamma\gamma} \rightarrow T^{\Gamma} A^{\gamma}$, T-Intro: $A / T^{\Gamma} A^{\gamma} - \neg (T^{\Gamma} A^{\gamma} \land T^{\Gamma} \neg A^{\gamma})$

The bounds for S_2 were fairly easy to establish. However, this is not the case for all nine of the theories we considered.

```
For example, \mathcal{E} is given by
```

```
Base_T + T-Del + U-Inf + T-Cons + T-Intro + T-Elim.
```

The upper bound \mathcal{E} is not so clear because we no longer have Cut-Elimination in the corresponding infinitary system. However, we can embed \mathcal{E} in a small extension of ID_1^* .

U-Inf: $\forall n \ T^{\Gamma} A \dot{n}^{\neg} \rightarrow T^{\Gamma} \forall x \ A x^{\neg}$, T-Elim: $T^{\Gamma} A^{\neg} / A$, T-Cons: T-Del: $T^{\Gamma} T^{\Gamma} A^{\neg \neg} \rightarrow T^{\Gamma} A^{\neg}$, T-Intro: $A / T^{\Gamma} A^{\neg} \neg (T^{\Gamma} A^{\neg} \land T^{\Gamma} \neg A^{\neg})$

The bounds for S_2 were fairly easy to establish. However, this is not the case for all nine of the theories we considered.

```
For example, \mathcal{E} is given by
```

```
Base_T + T-Del + U-Inf + T-Cons + T-Intro + T-Elim.
```

The upper bound \mathcal{E} is not so clear because we no longer have Cut-Elimination in the corresponding infinitary system. However, we can embed \mathcal{E} in a small extension of ID_1^* .

 ID_1^* is the theory extending PRA in which for each arithmetical formula $A \in \mathcal{L}_P^+$ with only one free variable the language is augmented by an additional predicate symbol I_A and we have the axioms

$$\forall u. \ A(u, I_A) \to I_A(u), \qquad (A \times I_A.1)$$

$$\forall u[A(u,F) \to F(u)] \to \forall u[I_A(u) \to F(u)], \qquad (Ax.I_A.2)$$

for each formula F containing only positive occurrences of predicates I_B for $B \in \mathcal{L}_P^+$ and induction for formulae where fixed-point predicates occur positively.

We define ${
m ID}_1^{*+}$ to be ${
m ID}_1^*$ with, as an additional axiom,

$$\forall u[A(u,F) \to F(u)] \to \forall u[I_A(u) \to F(u)], \qquad (Ax.I_A.3)$$

if $A \in \mathcal{L}_P^+$ is Σ_2 and F is any formula which is Σ_1 or Π_1 in I_A and $\neg I_A$

イロト 不得 トイヨト イヨト 二日

 ID_1^* is the theory extending PRA in which for each arithmetical formula $A \in \mathcal{L}_P^+$ with only one free variable the language is augmented by an additional predicate symbol I_A and we have the axioms

$$\forall u. \ A(u, I_A) \to I_A(u), \qquad (A \times I_A.1)$$

$$\forall u[A(u,F) \to F(u)] \to \forall u[I_A(u) \to F(u)], \qquad (A \times I_A.2)$$

for each formula F containing only positive occurrences of predicates I_B for $B \in \mathcal{L}_P^+$ and induction for formulae where fixed-point predicates occur positively.

We define ID_1^{*+} to be ID_1^* with, as an additional axiom,

$$\forall u[A(u,F) \to F(u)] \to \forall u[I_A(u) \to F(u)], \qquad (Ax.I_A.3)$$

if $A \in \mathcal{L}_P^+$ is Σ_2 and F is any formula which is Σ_1 or Π_1 in I_A and $\neg I_A$

イロト 不得下 イヨト イヨト 三日

Theorem

There are formulae $A_n(u, P^+)$ such that $\mathcal{E} \vdash C$ implies there is an n such that $\mathrm{ID}_1^{*+} \vdash I_n(\ulcorner C^{* \urcorner})$.

Theorem

Every arithmetical consequence of \mathcal{E} is a theorem of ID_1^{*+} .

Proof.

Let \mathfrak{A} be a model for the first-order part of ID_1^{*+} . Using \mathfrak{A} we may then build a hierarchy of \mathcal{L}_T -structures

$$\mathfrak{M}_0 = \langle \mathfrak{A}, \emptyset \rangle;$$

 $\mathfrak{M}_{n+1} = \langle \mathfrak{A}, I_n \rangle.$

with the property that $\mathfrak{M}_n \models I_n$. Now, if $\mathcal{E} \vdash A$ then $\mathfrak{M}_n \models A$ for some n. Hence $\mathfrak{A} \models A$. But \mathfrak{A} was arbitrary.

イロト イポト イヨト イヨト

Theorem

There are formulae $A_n(u, P^+)$ such that $\mathcal{E} \vdash C$ implies there is an n such that $\mathrm{ID}_1^{*+} \vdash I_n(\ulcorner C^{* \urcorner})$.

Theorem

Every arithmetical consequence of \mathcal{E} is a theorem of ID_1^{*+} .

Proof.

Let \mathfrak{A} be a model for the first-order part of ${\rm ID}_1^{*+}$. Using \mathfrak{A} we may then build a hierarchy of \mathcal{L}_T -structures

$$\mathfrak{M}_0 = \langle \mathfrak{A}, \emptyset \rangle;$$

 $\mathfrak{M}_{n+1} = \langle \mathfrak{A}, I_n \rangle.$

with the property that $\mathfrak{M}_n \models I_n$. Now, if $\mathcal{E} \vdash A$ then $\mathfrak{M}_n \models A$ for some n. Hence $\mathfrak{A} \models A$. But \mathfrak{A} was arbitrary.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Theorem

There are formulae $A_n(u, P^+)$ such that $\mathcal{E} \vdash C$ implies there is an n such that $\mathrm{ID}_1^{*+} \vdash I_n(\ulcorner C^{* \urcorner})$.

Theorem

Every arithmetical consequence of \mathcal{E} is a theorem of ID_1^{*+} .

Proof.

Let \mathfrak{A} be a model for the first-order part of ID_1^{*+} . Using \mathfrak{A} we may then build a hierarchy of \mathcal{L}_T -structures

$$\mathfrak{M}_{0} = \langle \mathfrak{A}, \emptyset
angle$$
 ;
 $\mathfrak{M}_{n+1} = \langle \mathfrak{A}, I_{n}
angle$.

with the property that $\mathfrak{M}_n \models I_n$. Now, if $\mathcal{E} \vdash A$ then $\mathfrak{M}_n \models A$ for some n. Hence $\mathfrak{A} \models A$. But \mathfrak{A} was arbitrary. \Box

And so,

Theorem

 $\varphi\omega\mathbf{0} = |\mathrm{ID}_1^*| \le |\mathcal{E}| \le |\mathrm{ID}_1^+|.$

- 2

イロン イヨン イヨン イヨン

References

Thank you.

🔋 A. Cantini.

A theory of formal truth arithmetically equivalent to ID1. Journal of Symbolic Logic, 55(1):244–259, March 1990.

H. Friedman and M. Sheard.

An axiomatic approach to self-referential truth. Annals of Pure and Applied Logic, 33:1–21, 1987.

V. Halbach.

A system of complete and consistent truth. Notre Dame Journal of Formal Logic, 35(3), 1994.

M. Sheard.

Weak and strong theories of truth. Studia Logica, 68:89–101, 2001.