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Introduction Formalising Truth

Formalising Truth

Definition (Language of truth)

We work in LT the language of Peano Arithmetic augmented with an
additional predicate symbol T . Let PAT denote PA formulated in the
language LT .

The intuition is that T (x) denotes that x is (the Gödel number of) a
“true” LT sentence.
Let p.q provide a Gödel numbering of LT .
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Introduction Formalising Truth

Choices for truth

Of course, by Tarski’s Theorem the “ideal” axiom of truth, TpAq↔ A for
all sentences A, is inconsistent with PAT . However, there are ways in
which we can overcome this inconsistency.

1 Restrict the language so as to stop self-reference. For example allow
TpAq↔ A for LPA.

2 Replace TpAq↔ A with weaker, consistent, axioms.

We will consider case 2.

Graham Leigh (University of Leeds) Axiomatic Theories of Truth LC’08, 8th July 2008 3 / 15



Introduction Formalising Truth

Choices for truth

Of course, by Tarski’s Theorem the “ideal” axiom of truth, TpAq↔ A for
all sentences A, is inconsistent with PAT . However, there are ways in
which we can overcome this inconsistency.

1 Restrict the language so as to stop self-reference. For example allow
TpAq↔ A for LPA.

2 Replace TpAq↔ A with weaker, consistent, axioms.

We will consider case 2.

Graham Leigh (University of Leeds) Axiomatic Theories of Truth LC’08, 8th July 2008 3 / 15



Introduction Formalising Truth

Choices for truth

Of course, by Tarski’s Theorem the “ideal” axiom of truth, TpAq↔ A for
all sentences A, is inconsistent with PAT . However, there are ways in
which we can overcome this inconsistency.

1 Restrict the language so as to stop self-reference. For example allow
TpAq↔ A for LPA.

2 Replace TpAq↔ A with weaker, consistent, axioms.

We will consider case 2.

Graham Leigh (University of Leeds) Axiomatic Theories of Truth LC’08, 8th July 2008 3 / 15



Introduction Formalising Truth

Choices for truth

Of course, by Tarski’s Theorem the “ideal” axiom of truth, TpAq↔ A for
all sentences A, is inconsistent with PAT . However, there are ways in
which we can overcome this inconsistency.

1 Restrict the language so as to stop self-reference. For example allow
TpAq↔ A for LPA.

2 Replace TpAq↔ A with weaker, consistent, axioms.

We will consider case 2.

Graham Leigh (University of Leeds) Axiomatic Theories of Truth LC’08, 8th July 2008 3 / 15



Introduction A Base for truth

A Base for truth

Let BaseT be the theory comprising of PAT and the following axioms.

1 (TpA→ Bq ∧ TpAq)→ TpBq.

2 T (uclpBq) for all tautologies B.

3 TpAq if A is a true primitive recursive atomic sentence.

where ucl(A) denotes the (Gödel number of the) universal closure of A.
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Introduction Axioms for truth.

Axioms of truth

Possible axioms, schema, and rules of inference we consider are
A→ TpAq, ¬(TpAq ∧ Tp¬Aq), A/TpAq,
TpAq→ A, TpAq ∨ Tp¬Aq, TpAq/A,
TpAq→ TpTpAqq, ∀n TpAṅq→ Tp∀x Axq, ¬A/¬TpAq,
TpTpAqq→ TpAq, Tp∃x Axq→ ∃n TpAṅq, ¬TpAq/¬A.

These axioms were considered by Harvey Freidman and Michael Sheard in
An axiomatic approach to self-referential truth [2].
They classified the above axioms and rules into nine maximally consistent
sets.
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Ordinal Analyses Lower bounds

U-Inf: ∀n TpAṅq→ Tp∀x Axq T-Elim: TpAq/A
T-Del: TpTpAqq→ TpAq T-Intro: A/TpAq

Definition

Let S1 be BaseT + U-Inf + T-Elim, and
S2 be BaseT + U-Inf + T-Del + T-Intro + T-Elim.
Denote by I (α) the formula ∀pAq TpTI(α̇, Ȧ)q.

Sheard proved (in [4]) that S1 ` ∀α. I (α)→ I (εα). Moreover he showed
|S1| = ϕ20.
We have shown S2 ` ∀α. I (α)→ I (ϕnα) for each n.

Proof. (Sketch).

From ` ∀α. I (α)→ I (ϕnα) we get ` ProgβI (ϕn′β) (with U-Inf). Thus,
` ∀α. TIβ(α, I (ϕn′β))→ I (ϕn′α). Now by T-Intro, axioms of BaseT and
T-Del we have ` ∀α. TpTIβ(α, I (ϕn′β))q→ I (ϕn′α). ut
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Sheard proved (in [4]) that S1 ` ∀α. I (α)→ I (εα). Moreover he showed
|S1| = ϕ20.
We have shown S2 ` ∀α. I (α)→ I (ϕnα) for each n.

Proof. (Sketch).

From ` ∀α. I (α)→ I (ϕnα) we get ` ProgβI (ϕn′β) (with U-Inf). Thus,
` ∀α. TIβ(α, I (ϕn′β))→ I (ϕn′α). Now by T-Intro, axioms of BaseT and
T-Del we have ` ∀α. TpTIβ(α, I (ϕn′β))q→ I (ϕn′α). ut

Graham Leigh (University of Leeds) Axiomatic Theories of Truth LC’08, 8th July 2008 6 / 15



Ordinal Analyses Lower bounds
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Ordinal Analyses Infinitary Theories

U-Inf: ∀n TpAṅq→ Tp∀x Axq T-Elim: TpAq/A
T-Del: TpTpAqq→ TpAq T-Intro: A/TpAq

It is more interesting to find an upper bound for S2. For this we need to
take a detour into infinitary logic.

Definition (Inductive Definition of S∞2 )

Define S∞2
α,n

k
Γ by (Ax.1), (∧), (∨i ), (ω), (∃) and

(Cut). If
α, n

k
Γ,A,

δ, n

k
Γ,¬A and |A| < k then

β, n

k
Γ,

(Ax.2.).
α, n

k
Γ,¬T (A),T (A) ,

(Ax.3.).
α, n

k
Γ,¬T (A) if A is not an LT -sentence,

(T-Intro). If
α, n

k
A and n < m then

β,m

k
Γ,T (A),

(T-Imp). If
α, n

k
Γ,T (A),

δ, n

k
Γ,T (A→ B)) then

β, n

k
Γ,T (B),

(T-Del). If
α, n

k
Γ,TpT (A)q then

β, n

k
Γ,T (A),

(T-U-Inf). If
α, n

k
Γ,TpAṁq for all m,

β, n

k
Γ,T (∀x Ax),

if α, δ < β.
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Ordinal Analyses Infinitary Theories

Definition

The rank of A, |A|, is defined as follows.

|A| = 0 if A is an arithmetical literal or T (s) for some term s.

|A ∧ B| = |A ∨ B| = |∀x A| = |∃x A| = |A|+ 1.

Theorem

Cut Elimination
S∞2

α, n

k+1
Γ implies S∞2

ωα, n

k
Γ .
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Ordinal Analyses Upper bounds

For each n > 0 and α define

Mn, α =
〈
N, {pBq : S∞2

α0,m

0
B for some m < n and α0 < α}

〉
and define M0, α = 〈N, ∅〉.

Lemma

For each n define fn(α) = ϕn(ϕ1α). Then for every n < ω we have

1 If
α, n

0
Γ then Mn, fn(α) |= Γ.

2 If
α, n

0
TpAq then

fn(α), p

0
A for some p < n.

3 If
α, n

k
Γ then

ϕ1α, n

0
Γ.

Corollary

If α < ϕω0 then
α,n

0
TpAq implies

β,n

0
A for some β < ϕω0.
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Ordinal Analyses Upper bounds

Thus, we have

Lemma

If S2 ` A then S∞2
α,n

0
A for some α < ϕω0.

and

Theorem

Let A be an arithmetical sentence, then S2 ` A implies
PA + TI(<ϕω0) ` A.

Hence

Corollary (T-Elimination for S∞2 )

|S2| = ϕω0.
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The theory E

U-Inf: ∀n TpAṅq→ Tp∀x Axq, T-Elim: TpAq/A, T-Cons:
T-Del: TpTpAqq→ TpAq, T-Intro: A/TpAq ¬(TpAq ∧ Tp¬Aq)

The bounds for S2 were fairly easy to establish. However, this is not the
case for all nine of the theories we considered.

For example, E is given by

BaseT + T-Del + U-Inf + T-Cons + T-Intro + T-Elim.

The upper bound E is not so clear because we no longer have
Cut-Elimination in the corresponding infinitary system. However, we can
embed E in a small extension of ID∗1.
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The theory E ID∗+
1

ID∗1 is the theory extending PRA in which for each arithmetical formula
A ∈ L+

P with only one free variable the language is augmented by an
additional predicate symbol IA and we have the axioms

∀u. A(u, IA)→ IA(u), (Ax.IA.1)

∀u[A(u,F )→ F (u)]→ ∀u[IA(u)→ F (u)], (Ax.IA.2)

for each formula F containing only positive occurrences of predicates IB
for B ∈ L+

P and induction for formulae where fixed-point predicates occur
positively.
We define ID∗+1 to be ID∗1 with, as an additional axiom,

∀u[A(u,F )→ F (u)]→ ∀u[IA(u)→ F (u)], (Ax.IA.3)

if A ∈ L+
P is Σ2 and F is any formula which is Σ1 or Π1 in IA and ¬IA
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The theory E E and inductive definitions

Theorem

There are formulae An(u,P+) such that E ` C implies there is an n such
that ID∗+1 ` In(pC ∗q).

Theorem

Every arithmetical consequence of E is a theorem of ID∗+1 .

Proof.

Let A be a model for the first-order part of ID∗+1 . Using A we may then
build a hierarchy of LT -structures

M0 = 〈A, ∅〉 ;

Mn+1 = 〈A, In〉 .

with the property that Mn |= In. Now, if E ` A then Mn |= A for some n.
Hence A |= A. But A was arbitrary. ut
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The theory E E and inductive definitions

And so,

Theorem

ϕω0 = |ID∗1| ≤ |E| ≤ |ID+
1 |.
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