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ABSTRACT

We consider varieties of semilattice based algebras. We define
a variant of interpolation property and find its algebraic
equivalent.
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NTERPOLATION AND AMALGAMTION

There is a close connection between syntactic and categorial
properties in varieties of algebras. In particular, between
different versions of interpolation and Beth properties in
varieties of algebras and amalgamation and epimorphisms
surjectivity.

One can find the definitions of amalgamation property AP,
super-amalgamation SupAP, strong amalgamation StrAP,
restricted amalgamation RAP, strong epimorphisms surjectivity
SES and of their algebraic equivalents, namely, Robinson
property ROB∗ (originated from H.Ono 1986), restricted
interpolation IPR, projective Beth property PBP in [Gabbay,
Maksimova 2005, M 2003].

L. Maksimova Interpolation in semilattice based varieties



tu-logo

ur-logo

ABSTRACT
Interpolation and amalgamation

Semilattice based varieties
Varieties of non-classical logics

NTERPOLATION AND AMALGAMTION

There is a close connection between syntactic and categorial
properties in varieties of algebras. In particular, between
different versions of interpolation and Beth properties in
varieties of algebras and amalgamation and epimorphisms
surjectivity.

One can find the definitions of amalgamation property AP,
super-amalgamation SupAP, strong amalgamation StrAP,
restricted amalgamation RAP, strong epimorphisms surjectivity
SES and of their algebraic equivalents, namely, Robinson
property ROB∗ (originated from H.Ono 1986), restricted
interpolation IPR, projective Beth property PBP in [Gabbay,
Maksimova 2005, M 2003].

L. Maksimova Interpolation in semilattice based varieties



tu-logo

ur-logo

ABSTRACT
Interpolation and amalgamation

Semilattice based varieties
Varieties of non-classical logics

For instance, a variety V has the amalgamation property AP iff
it has ROB∗ [Ono 1986].
(AP) For any A,B,C ∈ V such that A is a common subalgebra
of the algebras B and C, there exist an algebra D in V and
monomorphisms g : B→ D and h : C→ D such that
g(x) = h(x) for all x ∈ A.
(ROB∗) Let Γ(x,y) and ∆(x, z) satisfy the condition:
for all α(x), Γ(x,y) |=V α(x)} iff ∆(x, z) |=V α(x)}.
If Γ(x,y),∆(x, z) |=V δ(x, z), then ∆(x, z) |=V δ(x, z).
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SEMILATTICE BASED VARIETIES

Let us fix an arbitrary signature consisting of functional symbols
and constants and including ∧. We consider semilattice based
varieties of algebras, where ∧ is a greatest lower bound; as
usual, x ≤ y ⇐⇒ x ∧ y = x . We define a variant of
interpolation property and find its algebraic equivalent.
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We recall the definition of Super-amalgamation property:
(SupAP) For any A,B,C ∈ V such that A is a common
subalgebra of the algebras B and C, there exist an algebra D in
V and monomorphisms g : B→ D and h : C→ D such that
g(x) = h(x) for all x ∈ A and, moreover,

g(x) ≤ h(y) ⇐⇒ (∃z ∈ A)(x ≤ z and z ≤ y),

g(x) ≥ h(y) ⇐⇒ (∃z ∈ A)(x ≥ z and z ≥ y).

(WSupAP) arises from (SupAP) by changing ”monomorphisms”
to ”homomorphisms”.
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Let x,y, z be pairwise disjoint lists of variables. We formulate
Inequalities interpolation principle:
(IIP) Let Γ(x,y) and ∆(x, z) satisfy the condition:
for all α(x), Γ(x,y) |=V α(x)} iff ∆(x, z) |=V α(x)}.
If Γ(x,y),∆(x, z) |=V u(x,y) ≤ v(x, z), then there is a term t(x)
such that Γ(x,y) |=V u(x,y) ≤ t(x) and
∆(x, z) |=V t(x) ≤ v(x, z).
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Theorem

For any variety V :
1 IIP is equivalent to WSupAP;
2 V has SupAP iff it has AP and WSupAP.
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Beth’s definability properties
have as their source the theorem on implicit definability proved
by E.Beth in 1953 for the classical first order logic: Any
predicate implicitly definable in a first order theory is explicitly
definable. We formulate an analog of Beth’s property for
varieties, namely the projective Beth property PBP.

Let x, q, q′ be disjoint lists of variables not containing y and z,
Γ(x,q, y) a set of equations.
(PBP) If Γ(x,q, y), Γ(x,q′, z) |=V (y = z), then
Γ(x,q, y) |=V (y = t(x)) for some term t(x).
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M1998:

Lemma
PBP ⇐⇒ SES.

(SES) For any A,B in V, for any monomorphism α : A→ B and
for any x ∈ B− α(A) there exist C ∈ V and homomorphisms
β : B→ C and γ : B→ C such that βα = γα and β(x) 6= γ(x).
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RAP: For each A,B,C ∈ V such that A is a common
subalgebra of B and C there exist an algebra D in V and
homomorphisms δ : B→ D, ε : C→ D such that δ(x) = ε(x) for
all x ∈ A and the restriction of δ onto A is a monomorphism.

Theorem
1 IIP ⇒ PBP;
2 WSupAP ⇒ (SES & RAP).
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VARIETIES ASSOCIATED WITH NON-CLASSICAL
LOGICS

Theorem
Let a variety V satisfy the condition: there are a term
ε(x , y) and a constant e such that
x = y |=V e ≤ ε(x , y) and e ≤ ε(x , y) |=V x = y .
Then IIP implies AP, and so IIP, SupAP and WSupAP are
equivalent.
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