Low c.e. and low 2-c.e. degrees are not elementarily equivalent.

Mars M. Yamaleev

Kazan State University, Kazan

Basic definitions.

If a set $A \subseteq \omega$ is Turing reducible to $B \subseteq \omega$ then we denote $A \leq_T B$.

$$A \equiv_T B$$
 iff $A \leq_T B$ and $B \leq_T A$.

$$\mathbf{a} = deg(A) = \{B \mid B \equiv_T A\}.$$

The degrees with " \leq " and " \cup " form an upper semilattice, where $\mathbf{a} \cup \mathbf{b} = deg(A \oplus B)$ and $A \oplus B = \{2x \mid x \in A\} \cup \{2x+1 \mid x \in B\}.$

Also in this structure a jump operator is defined such that $\mathbf{b} \leq \mathbf{a} \to \mathbf{b}' \leq \mathbf{a}'$.

 $\mathbf{0'}$ is known as the degree of the halting problem.

Given Turing degrees 0 < b < a and a class of Turing degrees \mathcal{C} .

Definition. We say that \mathbf{b} is noncuppable to \mathbf{a} in the class \mathcal{C} if there is no degree $\mathbf{w} \in \mathcal{C}$ such that $\mathbf{w} < \mathbf{a}$ and $\mathbf{a} = \mathbf{b} \cup \mathbf{w}$

Definition. We say that \mathbf{b} is strongly noncuppable to \mathbf{a} in the class \mathcal{C} if there is no degree $\mathbf{w} \in \mathcal{C}$ such that $\mathbf{a} \nleq \mathbf{w}$ and $\mathbf{a} \leq \mathbf{b} \cup \mathbf{w}$.

Noncuppability.

Strongly noncuppability.

A REVIEW AND THE RESULTS

Theorem (Cooper; Yates; 1974 Γ .). There exists noncomputable c.e. degree b such that it is noncuppable to 0' in the class of computably enumerable (c.e.) degrees \mathbf{R} .

Remind that a degree $h \le 0'$ is a high if h' = 0''.

Theorem (Harrington, D. Miller 1981 Γ .). For every high degree h there exists high c.e. degree c < h such that c is strongly noncuppable to h in the class \mathbf{R} .

Theorem (Harrington, Fejer and Soar 1981 Γ .). There exists a noncomputable c.e. degree a such that for every noncomputable c.e. degree b < a and for every c.e. degree $d \geq a$ there exists c.e. degree c < d such that c = d.

Theorem (Cooper; Slaman and Steel; 1989 Γ .). There exist noncomputable c.e. degrees $\mathbf{b} < \mathbf{a}$ such that \mathbf{b} is noncuppable to \mathbf{a} in the class of Δ_2^0 degrees.

Theorem (Arslanov; 1988г.). For every noncomputable 2-c.e. degree \mathbf{b} there exists 2-c.e. degree \mathbf{d} such that $\mathbf{0}' = \mathbf{b} \cup \mathbf{d}$.

Remind that a degree $d \le 0'$ is a low if d' = 0'.

Theorem (Cooper, Lempp and Watson; 1989 Γ .). For every high c.e. degree h and for every noncomputable n-c.e. ($n \ge 1$) degree b < h there exists a low 2-c.e. degree d such that $h = b \cup d$.

Theorem 1. There exist noncomputable low c.e. degrees $\mathbf{b} < \mathbf{a}$ such that \mathbf{b} is strongly noncuppable to \mathbf{a} in the class \mathbf{R} .

Theorem 2. There exist noncomputable low c.e. degrees b < a such that b is strongly noncuppable to a in the class \mathbf{R}^{low} and for any low degree \mathbf{w} the degree of $b \cup \mathbf{w}$ is low again.

CONSEQUENCES

Firstly consider the well known consequence of the following two theorems: theorem (Cooper; Yates; 1974 Γ .) and theorem (Arslanov; 1988 Γ .) Remind the that \mathbf{R} is the class of all c.e. degrees and \mathbf{D}_2 is the class of all 2-c.e. degrees.

Consider the sentence

$$\varphi = \exists \mathbf{b} \ \forall \mathbf{w} \ [(\mathbf{0} < \mathbf{b}) \land [(\mathbf{w} < \mathbf{0}') \rightarrow (\mathbf{b} \cup \mathbf{w} < \mathbf{0}')]]$$

By theorem (Cooper; Yates; 1974г.) we have

$$\mathbf{R} \models \varphi$$
.

On other hand by theorem (Arslanov; 1988r.) we can see that

$$D_2 \not\models \varphi$$
.

So, the upper semilattices ${\bf R}$ and ${\bf D}_2$ are not elementarily equivalent.

Theorem (Cooper; Yates; 1974 Γ .). There exists noncomputable c.e. degree b such that it is noncuppable to 0' in the class of computably enumerable (c.e.) degrees \mathbf{R} .

Theorem (Arslanov; 1988г.). For every noncomputable 2-c.e. degree \mathbf{b} there exists 2-c.e. degree \mathbf{d} such that $\mathbf{0}' = \mathbf{b} \cup \mathbf{d}$.

Theorem 2. There exist noncomputable low c.e. degrees b < a such that b is strongly noncuppable to a in the class \mathbf{R}^{low} and for any low degree \mathbf{w} the degree of $b \cup \mathbf{w}$ is low again.

Theorem (Cooper, Lempp and Watson; 1989 Γ .). For every high c.e. degree h and for every noncomputable n-c.e. ($n \ge 1$) degree b < h there exists a low 2-c.e. degree d such that $h = b \cup d$.

Let ${f R}^{low}$ and ${f D}_2^{low}$ be the classes of all low c.e. and all low 2-c.e. degrees, respectively. Consider the sentence

$$\psi = \exists a, b \forall w [(0 < b < a) \land [a \le w \lor a \nleq b \cup w]].$$

By theorem 2 this sentence is true in the partial order of \mathbf{R}^{low} . But by the theorem (Cooper, Lempp and Watson; 1989r.) for every noncomputable low 2-c.e. degrees $\mathbf{b} < \mathbf{a}$ there exists low 2-c.e. degree \mathbf{d} such that $\mathbf{a} \leq \mathbf{b} \cup \mathbf{d}$. It is enough for

$$\mathbf{D}_{2}^{\mathrm{low}} \not\models \psi.$$

This gives that partial orders of ${f R}^{low}$ and ${f D}_2^{low}$ are not elementarily equivalent. At the end show the level of elementarily difference. Transform the sentence ψ to

$$\varphi = \exists \mathbf{a}, \mathbf{b} \forall \mathbf{w} [(\mathbf{0} < \mathbf{b} < \mathbf{a}) \land \{(\mathbf{a} \leq \mathbf{w}) \lor (\exists \mathbf{g} [\mathbf{a} \nleq \mathbf{g} \land \mathbf{b} \leq \mathbf{g} \land \mathbf{w} \leq \mathbf{g}])\}].$$

So, we see that partial orders of c.e. and 2-c.e. degrees are not elementarily equivalent on the Σ_3 level.