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Informal Question (Reimann, Terwijn)

Given a semi-random sequence, can we effectively produce a
random sequence?

Or at least a sequence that is closer to
random (i.e., one with higher information density)?

We will use information and randomness somewhat
interchangeably (more on this later).

By sequence we mean infinite binary sequence.
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A few examples

Example 0: Produce a sequence by flipping a fair coin: heads is
1 and tails is 0.

Random (with probability 1)

I.e., you can’t compress the initial segments (by much) and
can’t win (a lot of) money betting on the sequence.

Example 1: Use a coin to determine the odd bits and make
every even bit 0.

Half-random (every two bits contains one bit of
information)

Easy to extract a random sequence
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A few examples

Example 2: Produce a sequence by flipping a biased coin.

The right bias will make it half-random. (About 89% heads
will make the Shannon entropy of each bit 1/2.)

Again, we can extract a random sequence

Extracting randomness from a biased coin
(von Neumann, 1951)

Consider pairs of coin flips:

Output 1 if you see HT and 0 if you see TH

Produce no output for HH or TT

The resulting sequence is random
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Algorithmic randomness

To move beyond simple examples, we need to make the
informal question precise.

We use algorithmic randomness

Algorithmic randomness gives answers to questions like:

Given a finite binary sequence (a string) σ ∈ 2<ω, how
much information does it contain? I.e., how complex is it?

What does it mean for a sequence A ∈ 2ω to be random?

What does it mean for a sequence to be half-random (i.e.,
how do we measure information density)?
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The complexity of strings

Solomonoff (1964) and Kolmogorov (1965) independently
defined Kolmogorov complexity to measure the information
content of finite binary strings.

Levin (1973) and Chaitin (1975) modified Kolmogorov
complexity to characterize random sequences. (We will use this
modified version.)

Idea
The complexity of a string is the length

of its shortest binary description.

What do we mean by description?
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Examples of strings

In a reasonable “system of descriptions”:

(a)
10100 bits︷ ︸︸ ︷

101010 · · · 10 would have a short description.

(b) The first 10100 digits in the binary expansion of πwould
have a fairly short description (much shorter than 10100

bits).

In any “system of descriptions”:

(c) The result of flipping a coin 10100 times (heads=1, tails=0)
will almost certainly not have a description much shorter
than 10100.

There are not enough short descriptions to go around.
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What is a description?

Question. What sort of descriptions should we use?

Answer.
1 Want to be able to figure out what a description describes.
2 No proper prefix of a description should be a description.

In other words, we want our descriptions to be “decoded” by a
partial computable function with prefix-free domain:

M : 2<ω → 2<ω

Think ofM as a decompression algorithm.
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Why prefix-free?

If a description could be a proper prefix of another description,
then we need to be told when a description ends.

This is extra information

So, a description of length n could contain more than n bits of
information. Description length can underestimate complexity.

Intuition
In a prefix-free system, descriptions code their own lengths.

Hence, the length of a description is not extra information.
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Decompression functions

LetM : 2<ω → 2<ω be a partial computable function with
prefix-free domain (a machine).

Definition (Kolmogorov complexity with respect toM)

KM(σ) = min{|τ| : M(τ) = σ}.

Question. But how should we chooseM?

Answer. There is an (essentially) optimal choice.
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Prefix-free (Kolmogorov) complexity

There is a partial computable prefix-free U : 2<ω → 2<ω such
that ifM : 2<ω → 2<ω is any other partial computable
prefix-free function, then

KU(σ) 6 KM(σ) +O(1).

Note. The constant depends onM (but not on σ).

I.e., the universal prefix-free machine U (de-)compresses as well
as any other prefix-free machineM.

Prefix-free (Kolmogorov) complexity

K(σ) = KU(σ).
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Martin-Löf randomness

Idea. Random sequences should be incompressible.

Definition
A ∈ 2ω is Martin-Löf random (1-random) iff

K(A � n) > n−O(1).

Martin-Löf random sequences can also be characterized as
being:

Unremarkable: miss all “effective” measure zero sets
(Martin-Löf, 1966)

Unpredictable: (semi-)effective betting strategies cannot win
against then (Schnorr, 1971)

Fact. Almost all sequences are Martin-Löf random.
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Initial segment complexity

The initial segment complexity of a sequence tells us more than
whether it is random.

For example, it can tell us how random it is.

Theorem
K(A � n) is infinitely often essentially maximal (n+K(n)+O(1))
iff A is 2-random (random relative to ∅ ′, the halting problem).

Theorem (M,Yu)

Let Z be Martin-Löf random. If K(A � n) 6 K(B � n) + O(1)

and A is Martin-Löf random relative to Z, then B is Martin-Löf
random relative to Z.
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Effective Hausdorff dimension

We can use Kolmogorov complexity to measure the information
density of a sequence.

Definition
A ∈ 2ω has effective (Hausdorff) dimension

dim(A) = lim inf
n→∞ K(A � n)

n
.

So, a sequence of effective dimension 1/2 is guaranteed to have
(almost) n/2 bits of information in the first n bits, for all n.

But it can have much more for some n.
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Observations on effective dimension

Originally defined by Lutz (2000) as the effective Hausdorff
dimension of {A}. Although the Hausdorff dimension of a
singleton is always zero, the effective Hausdorff dimension
may not be.

The equivalence was proved by Mayordomo in 2002 and is
essentially implicit in Ryabko (1984).

Clearly, all Martin-Löf random sequences have effective
dimension 1.

It is easy to construct a counterexample to the converse.

The sequences in Examples 1 and 2 (with the right bias)
have effective dimension 1/2.
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Formalizing the main question

Question (Reimann, Terwijn, ∼2000)

If 0 < dim(A) < 1, does A compute a sequence of higher
effective dimension?

If dim(A) = 1, does A compute a Martin-Löf random?

The answer to both will be no.

Question. What is special about the sequences we saw in
Examples 1 and 2?

Partial answer. The information they contain is spread out
fairly regularly.
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Effective strong dimension

Definition
A ∈ 2ω has effective strong dimension

Dim(A) = lim sup
n→∞

K(A � n)

n
.

Dim(A) > dim(A).

Effective strong dimension is the effective analogue of
packing dimension (Athreya, Hitchcock, Lutz and
Mayordomo, 2004).

If A ∈ 2ω is from Examples 1 or 2 (i.e., obtained through
dilution or from a biased coin), then dim(A) = Dim(A).
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A partial (positive) result

Theorem (Bienvenu, Doty and Stephan, 2007)

If ε > 0 and Dim(A) > 0, then A computes a set B such that
dim(B) > dim(A)/Dim(A) − ε.

For example, if dim(A) = Dim(A) = 1/2, then A computes
sequences with effective dimension arbitrarily close to 1.

Open Question

Is there a sequence A ∈ 2ω such that dim(A) = Dim(A) = 1/2
but A does not compute a sequence of dimension 1?

It follows from one of our results that A need not compute a
Martin-Löf random sequence.
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More partial results

Another positive one:

Theorem (Zimond, 2007)
If A,B ∈ 2ω have positive effective dimension and are
sufficiently independent, then together they compute a sequence
of effective dimension 1.

Related to a result from the theory of randomness extractors.

On the negative side:

Theorem (Nies, Reimann; Bienvenu, Doty and Stephan, 2007)

There is no single algorithm that, given a sequence of effective
dimension 1/2, extracts a sequence of higher dimension.

Perhaps the algorithm simply needs extra information, such as
the strong dimension.
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Extracting randomness is hard

Theorem
There is an A ∈ 2ω such that dim(A) = 1/2 and A does not
compute a sequence of higher effective dimension.

This is proved using a novel forcing partial order.

The forcing conditions—in other words, the approximations
to A used in the construction—are (certain special) Π0

1 classes
whose measures have effective dimension 1/2.

Note. By the Bienvenu, Doty, Stephan result, Dim(A) = 1.
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Optimal covers

Definition
Let S ⊆ 2<ω. The direct weight of S is

DW(S) =
∑
σ∈S 2−|σ|/2.

The weight of S is
W(S) = inf {DW(V) : [S] ⊆ [V]} .

Soc ⊆ 2<ω is the optimal cover of S ⊆ 2<ω if [S] ⊆ [Soc] and
DW(Soc) = W(S).

For the sake of uniqueness, we also require [Soc] to have the
minimum measure among all possible contenders.

If S is c.e., then Soc is clearly ∆0
2.

More importantly, [Soc] is a Σ0
1 class.
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The forcing conditions

Our conditions are pairs 〈σ,S〉 such that

σ ∈ 2<ω,

S ⊆ [σ]<ω is a c.e. set, and

σ /∈ Soc.

The set of all sequences consistent with a condition 〈σ,S〉 is the
Π0

1 class
P〈σ,S〉 = [σ] r [Soc].

The most important property conditions have:
Lemma
Let 〈σ,S〉 be a condition. Then dim(µ(P〈σ,S〉)) 6 1/2.
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Effective dimension 1

The proof of the previous result can be modified to show:

Theorem
There is an A ∈ 2ω such that dim(A) = 1 and A does not
compute a Martin-Löf random.

A different technique produces a much stronger result.

Definition
A ∈ 2ω has minimal (Turing) degree if, for every sequence B
computable from A, either

B is computable, or

B computes A.
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Effective dimension 1

Theorem (Greenberg, M)

There is an A ∈ 2ω such that dim(A) = 1 and A has minimal
Turing degree.

It is well known that a Martin-Löf random cannot have
minimal degree (nor can it be computable). So A does not
compute a Martin-Löf random.

We reduced the problem to (the proof of) the following result:

Theorem (Kumabe, 1996; Kumabe, Lewis)
There is a DNC function of minimal Turing degree.
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The computational strength of Pravda

Definition (Diagonally non-computable)

A function f : ω→ ω is DNC if f(e) is not the output of the eth
program (on input e), for all e.

So, f cannot tell you whether the eth program halts; it just gives
you one number guaranteed not to be its output if it does.

Note
If f is DNC, then f is not computable.

But what can you do with a DNC function?
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The computational strength of Pravda

You can do a little. . . for example:
Theorem (M, Nies)
If f is DNC, then either

f computes a total function that is not dominated by any
computable function (i.e., f has hyperimmune degree), or

f enumerates a set that is not computable using both f and
∅ ′, the halting problem, (i.e., f is not generalized low).

Theorem (Greenberg, M; Kjos-Hanssen)

If f is DNC, then it computes an infinite subset of some Martin-
Löf random set.

. . . but not much. Might not compute a sequence with positive
dimension (Ambos-Spies, Kjos-Hanssen, Lempp and Slaman).
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Bounded DNC

Definition
Let h : ω→ ωr {0, 1}. We say that f : ω→ ω is h-DNC if f is
DNC and f(e) < h(e), for all e.

A constant bound guarantees computational strength:

Theorem (Various)
If f is 2-DNC, then it computes:

A prime ideal in every computable (countable)
commutative ring.

A fixed point for every computable g : [0, 1]2 → [0, 1]2.

Such functions also compute Martin-Löf random sequences, so
they cannot have minimal Turing degree.

27 / 32



Bounded DNC

Definition
Let h : ω→ ωr {0, 1}. We say that f : ω→ ω is h-DNC if f is
DNC and f(e) < h(e), for all e.

A constant bound guarantees computational strength:

Theorem (Various)
If f is 2-DNC, then it computes:

A prime ideal in every computable (countable)
commutative ring.

A fixed point for every computable g : [0, 1]2 → [0, 1]2.

Such functions also compute Martin-Löf random sequences, so
they cannot have minimal Turing degree.

27 / 32



Bounded DNC

Definition
Let h : ω→ ωr {0, 1}. We say that f : ω→ ω is h-DNC if f is
DNC and f(e) < h(e), for all e.

A constant bound guarantees computational strength:

Theorem (Various)
If f is 2-DNC, then it computes:

A prime ideal in every computable (countable)
commutative ring.

A fixed point for every computable g : [0, 1]2 → [0, 1]2.

Such functions also compute Martin-Löf random sequences, so
they cannot have minimal Turing degree.

27 / 32



Bounded DNC

Definition
Let h : ω→ ωr {0, 1}. We say that f : ω→ ω is h-DNC if f is
DNC and f(e) < h(e), for all e.

A constant bound guarantees computational strength:

Theorem (Various)
If f is 2-DNC, then it computes:

A prime ideal in every computable (countable)
commutative ring.

A fixed point for every computable g : [0, 1]2 → [0, 1]2.

Such functions also compute Martin-Löf random sequences, so
they cannot have minimal Turing degree.

27 / 32



h-Bounded DNC

The Kumabe and Lewis proof actually shows:

Theorem (Kumabe, Lewis)
For any computable, unbounded, nondecreasing
h : ω→ ωr {0, 1}, there is an h-DNC function of minimal
Turing degree.

So, all we had to prove was:

Theorem (Greenberg, M)

There is a computable, unbounded, nondecreasing
h : ω→ ωr {0, 1} such that every h-DNC function computes a
sequence with dimension 1.

. . . to get a sequence with dimension 1 and minimal degree.
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h-Bounded DNC and uniform computation

What can be computed from an h-DNC function, for a
sufficiently slow growing h, is related to what can be uniformly
computed from a n-DNC function for all n.

Theorem (Jockusch, 1989)
An n-DNC function computes a 2-DNC function. But this can
not be done uniformly for n > 2.

Theorem (Greenberg, M)

There is a uniform procedure to compute a sequence of
dimension 1 from an n-DNC function.

It is open whether 3-DNC functions compute Martin-Löf
random sequences uniformly.
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An application

Bjørn Kjos-Hanssen used (a relativization of) the existence of
dimension 1 sequence of minimal Turing degree to show:

Theorem (Kjos-Hanssen)

The Hausdorff dimension of the class of minimal Turing
degrees is 1.

Note: Kurtz proved that (even the upward closure of) this class
has measure 0.
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Another open question

Can the two main results be combined?

I.e., is there a minimal
degree of fractional dimension?

Open Question

Is there a sequence A ∈ 2ω of minimal degree such that
0 < dim(A) < 1 and A does not compute a sequence of higher
effective dimension (or at least, does not compute sequences of
dimension arbitrarily close to 1)?
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Thank You
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