Automorphism Spectra and Tree-Definability

Valentina Harizanov, George Washington University

Russell Miller,

Queens College & Graduate Center of CUNY

Andrei Morozov, Sobolev Institute of Mathematics

July 2008

The Automorphism Spectrum

Definition: For a computable structure \mathcal{A} , the *automorphism spectrum* of \mathcal{A} is the set

 $\operatorname{AutSpec}^*(\mathcal{A}) = \{ \deg(f) : f \in \operatorname{Aut}(\mathcal{A}) \& f \neq \operatorname{id} \}.$

So $\operatorname{AutSpec}^*(\mathcal{A})$ measures the complexity of the nontrivial symmetries of \mathcal{A} .

Notice that the same definition makes sense for noncomputable structures \mathcal{A} as well.

Singleton Automorphism Spectra

The following are known automorphism spectra:

- {**d**}, for every c.e. degree **d**, uniformly (HMM).
- $\{d\}$, for every degree $d \leq 0'$ (Hirschfeldt; Schmerl).
- {d}, for every degree d with
 0⁽ⁿ⁾ ≤ d ≤ 0⁽ⁿ⁺¹⁾ (HMM, using a technique of Marker and others).

Theorem: If $AutSpec^*(\mathcal{A}) = \{d\}$, then d is hyperarithmetical.

(This follows from the Perfect Set Theorem.)

Tree-Definability

Definition: A function $f : \omega \to \omega$ is tree-definable if there exists a computable subtree $T \subseteq \omega^{<\omega}$ such that f is the unique (infinite) path through T. We also say that $\deg(f)$ is tree-definable.

Theorem: The following are equivalent:

1. $\operatorname{AutSpec}^*(\mathcal{A})$ is at most countable.

2. $\operatorname{Aut}(\mathcal{A})$ is at most countable.

3. Every $d \in \operatorname{AutSpec}^*(\mathcal{A})$ is tree-definable.

Clearly $(1 \iff 2)$ and $(3 \implies 1)$. For $(2 \implies 3)$, apply Kueker's Theorem to get a finite tuple $p_1, \ldots, p_n \in \mathcal{A}$ such that (\mathcal{A}, \vec{p}) is rigid. So for $f \in \operatorname{Aut}(\mathcal{A})$, build a computable tree of those partial automorphisms φ of \mathcal{A} with $\varphi(p_i) = f(p_i)$ for all i.

Equivalence

Theorem: A degree d is tree-definable iff there is a computable \mathcal{A} with $\operatorname{AutSpec}^*(\mathcal{A}) = \{d\}$.

 (\implies) follows from a construction by Morozov, 1993. (Cf. Handbook of Recursive Mathematics, vol. 1.)

Since all degrees $\mathbf{0}^{(\alpha)}$ with $\alpha < \omega_1^{CK}$ are tree-definable, this yields:

Corollary: For every $\alpha < \omega_1^{CK}$, there exists a computable \mathcal{A} with AutSpec^{*} $(\mathcal{A}) = \{\mathbf{0}^{(\alpha)}\}.$

Outside the Bubbles

Recall that each of the following degrees

forms a singleton automorphism spectrum. What about arithmetic degrees outside this set?

New Automorphism Spectrum

Theorem: There exists a tree-definable Turing degree $d \leq 0''$ which is incomparable with 0'.

Corollary: There exists a computable \mathcal{A} whose sole nontrivial symmetry is arithmetical but incomparable with $\mathbf{0}'$.

Proof of theorem builds a computable $T \subseteq \omega^{<\omega}$ with unique path p satisfying:

 $\mathcal{R}_e : p \neq \Phi_e^{\emptyset'}$ $\mathcal{N}_e : \emptyset' \neq \Phi_e^p.$

$\textbf{Satisfying} \,\, \mathcal{R}_e$

At some node ρ_e on p we make $p \neq \Phi_e^{\emptyset'}$. Let $n = |\rho_e|$ and start building T with $p(n) = d_e$. Each time $\Phi_{e,s}^{\emptyset'_s}(n) \downarrow$ at some s, pick a new large $y \neq \Phi_{e,s}^{\emptyset'_s}(n)$ and switch the construction so that p(n) = y. If later \emptyset' changes on the use of this computation, switch back to $p(n) = d_e$.

So exactly one node above ρ_e is active at infinitely many stages.

$\textbf{Satisfying} \; \mathcal{N}_e$

To make $\emptyset' \neq \Phi_e^p$, use a Sacks preservation strategy at a node ν_e on p:

$$l(\nu_e, s) = \max\{x : (\forall y < x)\Phi_{e,s}^p(y) \downarrow = \emptyset'_s(y)\}$$
$$r(\nu_e, s) = \max\{\operatorname{use}(\Phi_{e,s}^p(y)) : y \le l(\nu_e, s)\}.$$

So if $\Phi_e^p = \emptyset'$, then $l(\nu_e, s) \to \infty$ and we would be able to compute \emptyset' .

For each $\nu_e \subset p$, T contains only one extension of ν_e up to the level $\lim l(\nu_e, s)$. (That extension will be ρ_{e+1} .) So a **0**"-oracle can compute p, by finding the unique node at each level which is actively infinitely often.

Every time we add a new node σ to T_s , we choose $\sigma(|\sigma|-1) > s$. So $T = \bigcup_s T_s$ is computable.

Outside Higher Bubbles

Corollary: For each $n \in \omega$, there exists a computable \mathcal{A} with AutSpec^{*} $(\mathcal{A}) = \{d\}$, where $\mathbf{0}^{(n)} \leq d \leq \mathbf{0}^{(n+2)}$ but d is incomparable with $\mathbf{0}^{(n+1)}$.

Proof: Relativize the construction above to build $\mathcal{B} \leq \mathbf{0}^{(n)}$ with this automorphism spectrum; then apply Marker's technique to \mathcal{B} .

Known Automorphism Spectra

- Singletons $\{d\}$: $\mathbf{0}^{(n)} \leq d \leq \mathbf{0}^{(n+1)}, d = \mathbf{0}^{(\alpha)},$ one d outside each bubble.
- All closures under join of finite unions of existing automorphism spectra.
- One set of three pairwise-incomparable degrees $\leq_T \mathbf{0}'$.
- All upward closures of existing automorphism spectra.
- The closure under join of $\{\deg(W_e) : W_e \in E\}$, for any uniformly c.e. family E of c.e. sets; likewise for properly Σ_{n+1} sets for other n.
- The set of all proper Σ_{n+1} -degrees; also the union of these for all n.