Prime Models of Computably Enumerable Degree

Rachel Epstein

Department of Mathematics
University of Chicago

July 3, 2008 / Logic Colloquium, Bern
In 1961, Robert Vaught introduced *prime, homogeneous,* and *saturated* models.

During the 1970’s, two groups separately began to study the computability of these models:
- Harrington, Millar, and Morley in America
- Goncharov, Nurtazin, and Peretyat’kin in Russia

For this talk, all languages, theories, and structures are countable, and all theories are complete.
In 1961, Robert Vaught introduced *prime*, *homogeneous*, and *saturated* models.

During the 1970’s, two groups separately began to study the computability of these models:
- Harrington, Millar, and Morley in America
- Goncharov, Nurtazin, and Peretyat’kin in Russia

For this talk, all languages, theories, and structures are countable, and all theories are complete.
In 1961, Robert Vaught introduced *prime*, *homogeneous*, and *saturated* models.

During the 1970’s, two groups separately began to study the computability of these models:

- Harrington, Millar, and Morley in America
- Goncharov, Nurtazin, and Peretyat’kin in Russia

For this talk, all languages, theories, and structures are countable, and all theories are complete.
Definition (Prime Model)

A model \mathcal{A} of a theory T is *prime* if \mathcal{A} elementarily embeds into every model of T.

For example, the algebraic numbers are a prime model of ACF_0.

Definition (Complete Formula)

An n-ary formula $\theta(\overline{x})$ consistent with T is *complete* if for all $\psi(\overline{x})$, either $T \vdash (\theta \rightarrow \psi)$ or $T \vdash (\theta \rightarrow \neg \psi)$.

Definition (Atomic Model)

A model \mathcal{A} of T is *atomic* if each tuple in \mathcal{A} satisfies a complete formula. Thus, an atomic model realizes only the principal types of T.

A countable model \mathcal{A} is atomic $\iff \mathcal{A}$ is prime.
Definition (Prime Model)
A model \mathcal{A} of a theory T is *prime* if \mathcal{A} elementarily embeds into every model of T.

For example, the algebraic numbers are a prime model of ACF_0.

Definition (Complete Formula)
An n-ary formula $\theta(x)$ consistent with T is *complete* if for all $\psi(x)$, either $T \vdash (\theta \rightarrow \psi)$ or $T \vdash (\theta \rightarrow \neg \psi)$.

Definition (Atomic Model)
A model \mathcal{A} of T is *atomic* if each tuple in \mathcal{A} satisfies a complete formula. Thus, an atomic model realizes only the principal types of T.

A countable model \mathcal{A} is atomic $\iff \mathcal{A}$ is prime.
Definition (Prime Model)
A model \mathcal{A} of a theory T is *prime* if \mathcal{A} elementarily embeds into every model of T.

For example, the algebraic numbers are a prime model of ACF_0.

Definition (Complete Formula)
An n-ary formula $\theta(x)$ consistent with T is *complete* if for all $\psi(x)$, either $T \vdash (\theta \rightarrow \psi)$ or $T \vdash (\theta \rightarrow \neg \psi)$.

Definition (Atomic Model)
A model \mathcal{A} of T is *atomic* if each tuple in \mathcal{A} satisfies a complete formula. Thus, an atomic model realizes only the principal types of T.

A countable model \mathcal{A} is atomic $\iff \mathcal{A}$ is prime.
Definition (Prime Model)

A model \mathcal{A} of a theory T is *prime* if \mathcal{A} elementarily embeds into every model of T.

For example, the algebraic numbers are a prime model of \mathbb{ACF}_0.

Definition (Complete Formula)

An n-ary formula $\theta(\bar{x})$ consistent with T is *complete* if for all $\psi(\bar{x})$, either $T \vdash (\theta \rightarrow \psi)$ or $T \vdash (\theta \rightarrow \neg \psi)$.

Definition (Atomic Model)

A model \mathcal{A} of T is *atomic* if each tuple in \mathcal{A} satisfies a complete formula. Thus, an atomic model realizes only the principal types of T.

A countable model \mathcal{A} is atomic $\iff \mathcal{A}$ is prime.
Definition (Atomic Theory)

A theory T is atomic if every formula consistent with T can be extended to a complete formula.

Theorem (Prime Model Theorem, Vaught)

Every complete atomic theory has a prime model.

How can we effectivize this theorem?
Definition (Atomic Theory)
A theory T is atomic if every formula consistent with T can be extended to a complete formula.

Theorem (Prime Model Theorem, Vaught)
Every complete atomic theory has a prime model.

How can we effectivize this theorem?
Definition (Atomic Theory)
A theory T is atomic if every formula consistent with T can be extended to a complete formula.

Theorem (Prime Model Theorem, Vaught)
Every complete atomic theory has a prime model.

How can we effectivize this theorem?
Definition (Decidable Theories and Models)

- A theory \(T \) is *decidable* if the set of sentences in \(T \) is computable.
- A model \(\mathcal{A} \) is *decidable* if its elementary diagram \(D^e(\mathcal{A}) \) is computable.
- A model \(\mathcal{A} \) has degree \(d \) if \(D^e(\mathcal{A}) \) has Turing degree \(d \).

Another interesting line of research is to study the atomic diagrams.
Theorem (Prime Model Theorem, Vaught)

Every complete atomic theory has a prime model.

The Prime Model Theorem cannot be effectivized:

Theorem (Goncharov-Nurtazin (1974), Millar (1978))

There is a complete atomic decidable (CAD) theory with no decidable prime model.

Proof idea:

- If \mathcal{A} is a prime model, then $D^e(\mathcal{A})$ can compute a listing of the principal types of T.
- Build a CAD theory T so that if φ_e appears to list the principal types, it lists some non-principal type as well.
Theorem (Prime Model Theorem, Vaught)

Every complete atomic theory has a prime model.

The Prime Model Theorem cannot be effectivized:

Theorem (Goncharov-Nurtazin (1974), Millar (1978))

There is a complete atomic decidable (CAD) theory with no decidable prime model.

Proof idea:

- If \mathcal{A} is a prime model, then $D^e(\mathcal{A})$ can compute a listing of the principal types of T.
- Build a CAD theory T so that if φ_e appears to list the principal types, it lists some non-principal type as well.
Theorem (Prime Model Theorem, Vaught)

Every complete atomic theory has a prime model.

The Prime Model Theorem cannot be effectivized:

Theorem (Goncharov-Nurtazin (1974), Millar (1978))

There is a complete atomic decidable (CAD) theory with no decidable prime model.

Proof idea:

- If \mathcal{A} is a prime model, then $D^e(\mathcal{A})$ can compute a listing of the principal types of T.
- Build a CAD theory T so that if φ_e appears to list the principal types, it lists some non-principal type as well.
Question

What are the degrees of prime models of CAD theories?

Theorem (Knight, Upward Closure, (1986))

For a nontrivial theory T, the set of degrees of prime models of T is upward closed.

Theorem (Denisov (1989), Drobotun (1978), Millar (1978))

Every CAD theory has a prime model computable in $0'$.

- $0'$ can carry out the usual construction of a prime model.
- Many people have worked on improving this.
What are the degrees of prime models of CAD theories?

For a nontrivial theory T, the set of degrees of prime models of T is upward closed.

Every CAD theory has a prime model computable in $0'$. $0'$ can carry out the usual construction of a prime model. Many people have worked on improving this.
Question

What are the degrees of prime models of CAD theories?

Theorem (Knight, Upward Closure, (1986))

For a nontrivial theory T, the set of degrees of prime models of T is upward closed.

Theorem (Denisov (1989), Drobotun (1978), Millar (1978))

Every CAD theory has a prime model computable in $0'$.

- $0'$ can carry out the usual construction of a prime model.
- Many people have worked on improving this.
Question

What are the degrees of prime models of CAD theories?

Theorem (Knight, Upward Closure, (1986))

For a nontrivial theory T, the set of degrees of prime models of T is upward closed.

Theorem (Denisov (1989), Drobotun (1978), Millar (1978))

Every CAD theory has a prime model computable in $0'$.

- $0'$ can carry out the usual construction of a prime model.
- Many people have worked on improving this.
Question

What are the degrees of prime models of CAD theories?

Theorem (Knight, Upward Closure, (1986))

For a nontrivial theory T, the set of degrees of prime models of T is upward closed.

Theorem (Denisov (1989), Drobotun (1978), Millar (1978))

Every CAD theory has a prime model computable in $0'$.

- $0'$ can carry out the usual construction of a prime model.
- Many people have worked on improving this.
Theorem (Csima, Prime Low Basis Theorem (2004))

Every CAD theory has a prime model \mathcal{A} of low degree, i.e., $D^e(\mathcal{A})' \equiv_T 0'$.
A set C is *computably enumerable* (c.e.) if there is an effective listing of its elements.

- Computably enumerable sets and degrees have played a central role in computability theory since Post’s Problem of 1944.
- There are many applications of the c.e. sets, including:
 - Unsolvability of Hilbert’s 10th problem
 - Unsolvability of word problem for groups
 - Differential geometry
A set C is *computably enumerable* (c.e.) if there is an effective listing of its elements.

- Computably enumerable sets and degrees have played a central role in computability theory since Post’s Problem of 1944.
- There are many applications of the c.e. sets, including:
 - Unsolvability of Hilbert’s 10th problem
 - Unsolvability of word problem for groups
 - Differential geometry
A set C is *computably enumerable* (c.e.) if there is an effective listing of its elements.

- Computably enumerable sets and degrees have played a central role in computability theory since Post's Problem of 1944.
- There are many applications of the c.e. sets, including:
 - Unsolvability of Hilbert’s 10th problem
 - Unsolvability of word problem for groups
 - Differential geometry
Remark

If $D_e(A)$ is a c.e. set, then it is computable.

We will instead focus our attention on prime models of computably enumerable Turing degree.

Definition

A Turing degree c is *computably enumerable* (c.e.) if c contains a c.e. set.
Remark

If $D^e(A)$ is a c.e. set, then it is computable.

We will instead focus our attention on prime models of computably enumerable Turing degree.

Definition

A Turing degree c is *computably enumerable* (c.e.) if c contains a c.e. set.
Theorem (Csima, Hirschfeldt, Knight, Soare, Prime Bounding (2004))

The degree $d \leq 0'$ is the degree of a prime model of every CAD theory $\iff d'' > 0''$ (i.e., d is nonlow$_2$).

Corollary

All nonlow$_2$ c.e. degrees are the degrees of prime models for every CAD theory.
Theorem (Csima, Hirschfeldt, Knight, Soare, Prime Bounding (2004))

The degree $d \leq 0'$ is the degree of a prime model of every CAD theory $\iff d'' > 0''$ (i.e, d is nonlow$_2$).

Corollary

All nonlow$_2$ c.e. degrees are the degrees of prime models for every CAD theory.
blue = degrees of prime models for a given CAD theory
Theorem (Epstein)

Every CAD theory has a prime model of low c.e. degree.

- The proof differs greatly from Csima’s proof for low degrees:
 - Csima used a forcing argument with a $0'$-oracle construction.
 - For the c.e. case, we use a priority argument with a computable construction.
Prime Low C.E. Basis Theorem

Theorem (Epstein)

Every CAD theory has a prime model of low c.e. degree.

- The proof differs greatly from Csima’s proof for low degrees:
 - Csima used a forcing argument with a $0'$-oracle construction.
 - For the c.e. case, we use a priority argument with a computable construction.
Density of Prime Models of C.E. Degree

Theorem (Sacks, Density Theorem)

Let d and c be c.e. degrees with $d < c$. Then there is a c.e. degree b between d and c.

Theorem (Epstein)

Let T be a CAD theory, c be nonlow$_2$ and c.e., and $d < c$ be c.e. Then there is a prime model A of T of c.e. degree a with $d < a < c$ and $a' = d'$.

- Uses infinite injury
- Below any nonlow$_2$ c.e. degree, there is a prime model of low c.e. degree.
- Can make a' any degree c.e. in c and above d'.

Rachel Epstein
Prime Models of Computably Enumerable Degree
Theorem (Sacks, Density Theorem)

Let \(d \) and \(c \) be c.e. degrees with \(d < c \). Then there is a c.e. degree \(b \) between \(d \) and \(c \).

Theorem (Epstein)

Let \(T \) be a CAD theory, \(c \) be nonlow\(_2\) and c.e., and \(d < c \) be c.e. Then there is a prime model \(A \) of \(T \) of c.e. degree \(a \) with \(d < a < c \) and \(a' = d' \).

- Uses infinite injury
- Below any nonlow\(_2\) c.e. degree, there is a prime model of low c.e. degree.
- Can make \(a' \) any degree c.e. in \(c \) and above \(d' \).
a' = d'
Theorem (Epstein)

Let $c > 0$ be the c.e. degree of a prime model of a CAD theory T. Then there is a prime model of T of low c.e. degree $a < c$.

This theorem does not hold for non-c.e. degrees.
Theorem (Epstein)

Let $c > 0$ be the c.e. degree of a prime model of a CAD theory T. Then there is a prime model of T of low c.e. degree $a < c$.

This theorem does not hold for non-c.e. degrees.
Corollary

For any degree c, with $0 < c < 0'$, every CAD theory T has a prime model of low c.e. degree a such that $c|a$ (i.e., $c \not< a$ and $a \not< c$).
Corollary

Every CAD T has a minimal pair of prime models of low c.e. degree.
Question

Can we combine the “pushdown” and “density” theorems? That is, given a prime model of c.e. (low\(_2\)) degree \(c\), and given a c.e. degree \(d < c\), is there a prime model of c.e. degree \(a\) between \(d\) and \(c\)? Can we guarantee that \(a' = d'\)?
For Further Reading

Thank you for listening.