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Outline of talk

1. Algebras (here, distributive lattices) with adjoint modalities

2. Gentzen and Belnap style sequent calculi

3. Rules of our calculus, soundness

4. Cut elimination argument

5. Consequences (completeness, decidability)

6. Conclusion and future plans
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Algebras with adjoint modalities

Classical algebraic modal logic

Boolean Algebra with De Morgan dual operators (�,♦)

Non-classical algebraic modal logic

weaken the base and the duality

Heyting algebra with ’dual’ operators

Complete lattice with *adjoint* operators
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Distributive Lattices with Adjoint Modalities (DLAM)

Let A be a set, with elements called agents. A DLAM over A is a
bounded distributive lattice L with an A-indexed family of maps
{fA}A∈A : L → L, each with a right adjoint �A : L → L. Thus,
for all l, l′, (li : iεI), the following hold (for finite I), :

fA(l) ≤ l′ iff l ≤ �Al
′

fA(
∨
i

li) =
∨
i

fA(li)

�A(
∧
i

li) =
∧
i

�A(li)

In particular, fA⊥ = ⊥ and �A> = >; and all fA and �A are
order-preserving. If the lattice is complete, then the existence of
the right adjoints follows routinely provided the maps fA (exist
and) preserve arbitrary joins.
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Application

Reasoning about knowledge of agents A ∈ A

m,m′ ∈M : logical propositions

m ∨m′,m ∧m′: logical disjunction, conjunction

m ≤ m′: logical consequence

fA(m): appearance of agent A about m

All the propositions that appear to agent A

to be true when m holds in reality.

�Am: agent A knows that m
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Gentzen-style sequent calculi

Sequent calculi for reasoning about lattices are old; there are
two forms. The first [4,5] considers sequents of “atoms” t ≤ t′
and is useful to decide quasi-equations in lattice theory, e.g.

Γ ⇒ s ≤ t Γ ⇒ s ≤ t′
Γ ⇒ s ≤ (t ∧ t′) R∧

The second kind (see [7]) considers sequents of terms, with the
sequent arrow to represent the lattice order ≤, and, with

t = t′ iff t ⇒ t′ and t′ ⇒ t,

decides the equational theory of distributive lattices, e.g. with

Γ ⇒ t Γ ⇒ t′
Γ ⇒ t ∧ t′ R∧

Ours is a generalisation of this second kind.
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Gentzen-style sequent calculi, 2

[1] gives a Gentzen-style calculus (of the second kind) for mod-

elling epistemic actions as resources. The calculus allows reason-

ing about “epistemic systems”, modelled by a quantale Q acting

on a Q-module of epistemic propositions and facts.

The calculus includes a cut rule; this appears to be (in the con-

text of that calculus) non-eliminable; we seek to remedy this as

a basis for automation of proof search.
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Belnap-style sequent calculi

Our calculus also includes agents, whose presence forces a richer

structure of sequents. Moortgat [6] attributes this to Belnap [2],

and exploits it (in a linguistic context) for residuated lattices with

modal operators. (Our work is thus a variation on Moortgat’s

work, distinguished by organisation of rules to allow Weakening

to be admissible.)
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Syntax of our calculus: Formulae, items, contexts

The set M of formulae m of our language is generated over sets
At of atoms p and A of agents A and by the following grammar:

m ::= ⊥ | > | p | m ∧m | m ∨m | �Am | fA(m)

Items I, J, . . . and contexts Γ,∆, . . . are generated by the following
syntax:

I ::= m | ΓA

Γ ::= {I, I, · · · , I}

Thus, contexts are finite multisets of items, whereas items are
either formulae or contexts annotated with an agent. (Where
there is only one agent, the name boxed context can be used,
as in [3].)
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Syntax of our calculus: Contexts with holes

The notion of context-with-a-hole ∆ is defined as follows:

∆ ::= (Γ, []) | (Γ,∆A)

and so a context-with-a-hole is a context (i.e. a multiset of items)
together with either a hole or an agent-annotated context-with-
a-hole. Note that a context-with-a-hole is not a context.

The result ∆[Γ] of applying ∆ to a context Γ, replacing the hole
[] by Γ, is a context, defined recursively as follows:

(Γ, []) [Γ′] = Γ,Γ′

(Γ,∆A) [Γ′] = Γ,∆[Γ′]A

where the commas in the right-hand sides indicate multiset union.
This will often be applied in the particular case where Γ′ is a sin-
gle item (treated as a one-element multiset).
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Rules of our calculus: Axioms (initial sequents)

Γ,m ` m Id ∆[⊥] ` m ⊥L Γ ` > >R

The first rule is restricted to atoms m; but it can be shown that

all sequents Γ,m ` m are derivable. Note that the ⊥L rule allows

the ⊥ to appear anywhere (as an item) deep inside the context,

whereas the Id rule requires the principal formula to appear at

top level in the context. This captures the requirement that (in

the lattice interpretation) fA(⊥) = ⊥ (this is not generally true

for arbitrary elements).
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Rules of our calculus: Rules for the lattice operations

∆[m1,m2] ` m
∆[m1 ∧m2] ` m ∧L

Γ ` m1 Γ ` m2
Γ ` m1 ∧m2

∧R

∆[m1] ` m ∆[m2] ` m
∆[m1 ∨m2] ` m ∨L Γ ` mi

Γ ` m1 ∨m2
∨Ri
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Rules of our calculus: Rules for the modalities

∆[mA] ` m′
∆[fA(m)] ` m′ fAL

Γ ` m
Γ′,ΓA ` fA(m)

fAR

∆[(�Am)A,m] ` m′

∆[(�Am)A] ` m′
�AL ΓA ` m

Γ ` �Am
�AR
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Rules of our calculus:

Interaction between exponentiation and meet

Finally, we need a rule (named K, following [6])

∆[(Γ′,Γ′′)A,Γ′A,Γ′′A] ` m
∆[(Γ′,Γ′′)A] ` m K
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Example Derivations

m ` m
mA ` fA(m)

fAR

m ` �AfA(m)
�AR

(�Am)A,m ` m
(�Am)A ` m

�AL

fA(�Am) ` m fAL

m ` m
mA ` fA(m)

fAR

mA ` fA(m) ∨ fA(m′)
∨R

m′ ` m′
m′A ` fA(m′)

fAR

m′A ` fA(m) ∨ fA(m′)
∨R

(m ∨m′)A ` fA(m) ∨ fA(m′)
fA(m ∨m′) ` fA(m) ∨ fA(m′)

fAL

(Converse of the last is easy.)
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Example Derivations, 2

m ` m
. . . ,mA,m′A ` fA(m)

fAR
m′ ` m′

. . . ,mA,m′A ` fA(m′)
fAR

. . . ,mA,m′A ` fA(m) ∧ fA(m′)
∧R

. . . , (m ∧m′)A ` fA(m) ∧ fA(m′)
K

fA(m ∧m′) ` fA(m) ∧ fA(m′)
fAL
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Semantics of sequents; soundness:

Let L be a DLAM over A. An interpretation of the set M of formu-

lae (over the atoms At and agents A) in L is a map: [[−]]:At→ L.

Meaning of a formula: by induction on the structure, e.g.

[[m1 ∧m2]] = [[m1]] ∧ [[m2]], [[fA(m)]] = fA([[m]])

Meaning of an item

[[m]] = as above, [[ΓA]] = fA([[Γ]])

Meaning of a context

[[{I1, . . . , In}]] = [[I1]] ∧ . . . ∧ [[In]]
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Semantics of sequents; soundness:

Let L be a DLAM.

Definition. Truth.
A sequent Γ ` m is true in an interpretation [[−]] in L iff [[Γ]] ≤ [[m]].
A sequent Γ ` m is true in L iff true in every interpretation in L.

Definition. Satisfiability.
A sequent Γ ` m is satisfiable (in L) iff there is an interpretation
(in L) in which it is true.

Definition. Validity.
A sequent Γ ` m is valid iff it is true in all interpretations.

Theorem. Soundness.
Any derivable sequent is valid.
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Admissible Structural Rules

Lemma. The following Weakening rule is dp-admissible

∆[Γ] ` m
∆[Γ,Γ′] ` mWk

Proof. Induction on the height of the derivation of the premiss

and case analysis. E.g., suppose the last step is by fAR, with

m = fAm
′, and with premiss Γ∗ ` m′ and conclusion Γ′′,Γ∗A ` m,

so ∆[Γ] = Γ′′,Γ∗A. To obtain ∆[Γ,Γ′] from this there are two

possibilities. In the first case, Γ occurs inside Γ∗A, and we make

a routine use of the inductive hypothesis and reapply fAR with

the same parameter. In the second case, we just use the fAR

rule with a different parameter.
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Admissible Structural Rules, 2

The dp-admissibility is used when we consider the K rule, since

the place where the extra context Γ′ is included may, in the

premiss of that rule, be duplicated, requiring two weakenings by

the inductive hypothesis.

Since (in the definition of ‘context’) we are using multi-sets

rather than sets, there is a need to show admissibility of Con-

traction. This can be done; note the various duplications in the

rules to ensure this works. (The rule is that from ∆[Γ,Γ] ` m
we can infer ∆[Γ] ` m.)
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Cut elimination

Theorem. The Cut rule is admissible

Γ ` m ∆[m] ` m′
∆[Γ] ` m′ Cut

Proof. Strong induction on the rank of the cut, where the rank

is given by the pair (size of cut formula m, sum of heights of

derivations of premisses).

21



Cut elimination: example step

Suppose the cut formula is fA(m) and is principal in both pre-

misses:

Γ ` m
Γ′,ΓA ` fA(m)

fAR
∆[mA] ` m′

∆[fA(m)] ` m′ fAL

∆[Γ′,ΓA] ` m′ Cut

transforms to

Γ ` m ∆[mA] ` m′
∆[ΓA] ` m′ Cut

∆[Γ′,ΓA] ` m′Wk
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Consequences (transitivity)

Theorem. From m ` m′ and m′ ` m′′ follows m ` m′′.
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Consequences (completeness)
(Fix a set of atoms.)

Theorem. Let m,m′ be formulae (in a language over the set A
of agents. The following are equivalent:

1. m ` m′;

2. m ≤ m′ is true in all DLAMs over A;

3. m ≤ m′ is true in all complete DLAMs over A.

Thus, the sequent calculus is (w.r.t. the given semantics) sound
and complete.
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Consequences (proof of completeness, 3 implies 1)

Routine Lindenbaum-Tarski construction and completion.
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Consequences (decidability)

Straightforward, using the sub-formula property and a loop-checker.

Is there a simple variant that allows avoidance of a loop-checker?

26



Conclusion and future plans

1. changing the representation, e.g. lists rather than multisets

2. proof-theoretic and implementation issues, e.g. invertibility

lemmas, termination, loop-checking

3. enriching the base: Heyting algebras, quantales (for Linear

Logic), systems [1]

4. comparing with other calculi for modal logics, e.g. deep infer-

ence systems (Guglielmi, Stouppa, Stewart, Brünnler, . . . )
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