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What we mean by dynamics

Dynamics understood as the study of processes which evolve over time
according to some iterative rule has been an essential part of mathematics
for millenia.
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What we mean by dynamics

Dynamics understood as the study of processes which evolve over time
according to some iterative rule has been an essential part of mathematics
for millenia and has been studied via methods in logic for almost as long.

We shall concentrate on discrete dynamics, and more specifically, on issues
around the iteration of a single function, and even more specifically
(mostly) with algebraic dynamics and even there only on a small fragment
of the theory.
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Dynamics as iteration

For us, a dynamical system is given by a self-map f : X → X from a set X
back to itself.
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Dynamics as iteration

For us, a dynamical system is given by a self-map f : X → X from a set X
back to itself.

The dynamics of a dynamical system are really understood in terms of the
properties of f : X → X under iteration, namely, of the associated function

F : N× X → X

(n, x) 7→ f n(x)

Indeed, in the literature on dynamical systems, the function F , possibly
with N replaced by another semigroup and assumed to satisfy a cocycle
condition reflecting the iterative nature of the dynamics, is taken as
primitive.
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Algebraic dynamics

For the most part, we shall specialize to the case of algebraic dynamics
where f : X → X is a regular map of algebraic varieties.
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Algebraic dynamics

For the most part, we shall specialize to the case of algebraic dynamics
where f : X → X is a regular map of algebraic varieties.
Fix an algebraically closed field K (which you could take to be C without
much loss of generality).

Definition

An algebraic variety (really, an affine algebraic subvariety of An
K ) is a set of

the form
X = {(a1, . . . , an) ∈ Kn :

∧
Gj(a) = 0}

where each Gj ∈ K [x1, . . . , xn] is a polynomial in n variables.
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Algebraic dynamics

For the most part, we shall specialize to the case of algebraic dynamics
where f : X → X is a regular map of algebraic varieties.
Fix an algebraically closed field K (which you could take to be C without
much loss of generality).

Definition

An algebraic variety (really, an affine algebraic subvariety of An
K ) is a set of

the form
X = {(a1, . . . , an) ∈ Kn :

∧
Gj(a) = 0}

where each Gj ∈ K [x1, . . . , xn] is a polynomial in n variables.

Definition

A regular function f : X → X is a function of the form

(x1, . . . , xn) 7→ (F1(x), . . . ,Fn(x))

where each Fi is a polynomial.
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Observations about decidability and algebraic dynamics

If f : X → X is an algebraic dynamical system over K , then X and f
may be regarded as K -definable sets. Indeed, by the Tarski-Chevallay
quantifier elimination theorem, every definable set is a finite Boolean
combination of varieties.) As the theory of algebraically closed fields
is decidable, questions about f : X → X expressible in the language
of rings may be algorithmically resolved.

The associated function F : N× X → X expressing the iteration of f
makes essential reference to N so that in general one might expect
questions about dynamical properties of f : X → X to be intractable.
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Observations about decidability and algebraic dynamics

If f : X → X is an algebraic dynamical system over K , then X and f
may be regarded as K -definable sets. As the theory of algebraically
closed fields is decidable, questions about f : X → X expressible in
the language of rings may be algorithmically resolved.

The associated function F : N× X → X expressing the iteration of f
makes essential reference to N so that in general one might expect
questions about dynamical properties of f : X → X to be intractable.

It is very easy to find natural problems about algebraic dynamical systems
to which arbitrarily complicated problems in the theory of arithmetic are
reducible. The real task is to isolate a class of algebraic dynamics
controlled by tame geometries in the model theoretic sense.
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Periodic points

Definition

Given a dynamical system f : X → X we say that a point a ∈ X is
periodic if f n(a) = a for some n ∈ Z+.
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Periodic points

Definition

Given a dynamical system f : X → X we say that a point a ∈ X is
periodic if f n(a) = a for some n ∈ Z+.

Question

Under what conditions on f : X → X are there “many” periodic points?
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Periodic points for polynomials

Suppose that f (x) =
∑N

i=0 aix
i ∈ C[x ] is a one-variable polynomial of

degree N.

So, when N > 1, f n(x)− x is a polynomial of degree Nn and it will
have at least one solution (and one expects it to have about Nn

solutions).

When N = 1, whether or not f n(x) = x has solutions depends on
whether or not a1 is a root of unity and whether or not a0 = 0. For
example, f (x) = x + 1 has no periodic points.
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degree N.
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Fakhruddin’s theorem

So, over C the question of whether or not a dynamical system has any
periodic points could be delicate, but with C replaced by Fp

alg, the
algebraic closure of the field of p-elements, there are always many periodic
points.
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Fakhruddin’s theorem

So, over C the question of whether or not a dynamical system has any
periodic points could be delicate, but with C replaced by Fp

alg, the
algebraic closure of the field of p-elements, there are always many periodic
points.

Theorem (Poonen (exposed by Fakhruddin))

Every algebraic dynamical system over Fp
alg has many periodic points

unless there are obvious reasons why it does not.
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Fakhruddin’s theorem

So, over C the question of whether or not a dynamical system has any
periodic points could be delicate, but with C replaced by Fp

alg, the
algebraic closure of the field of p-elements, there are always many periodic
points.

Theorem (Poonen (exposed by Fakhruddin))

If X is an irreducible variety defined over K = Fp
alg and f : X → X is a

dominant self-map, then the set of periodic points for f : X → X is Zariski
dense.

We will return to a give a complete proof (modulo a theorem in logic) of
this theorem and the highlighted terms from algebraic geometry will be
defined precisely.
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Difference fields

A difference field is a field K given together with a distinguished field
endomorphism σ : K → K .
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As it stands, σ : K → K is already a dynamical system and algebraic
dynamical systems may be analyzed in terms of definable sets in difference
fields.
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Difference fields

A difference field is a field K given together with a distinguished field
endomorphism σ : K → K .

As it stands, σ : K → K is already a dynamical system and algebraic
dynamical systems may be analyzed in terms of definable sets in difference
fields.

Example

K any field, σ = Id : K → K the identity function

K = C(t) the field of rational functions in one variable over C,
σ(f )(t) := f (t + 1)

More generally, if f : X → X is an algebraic dynamical system over C
and K = C(X ) is the field of rational functions on X , then σ : K → K
defined by σ(g)(x) := g(f (x)) makes K into a difference field.

K a (perfect) field of characteristic p > 0, q a power of p,
σ = Fq : K → K , the q-power Frobenius: x 7→ xq
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ACFA

The theory of difference fields, expressed in the language L (+,×, 0, 1, σ)
has a model companion, ACFA.

ACFA is a supersimple theory for which the rank one definable sets
admit a fine structure theory along the lines of the Zilber trichotomy.

On general grounds, we know that the axioms for ACFA say the
structure is an existentially closed difference field and that the
existentially closedness condition may be expressed in terms of certain
resolvant formulas.
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ACFA

The theory of difference fields, expressed in the language L (+,×, 0, 1, σ)
has a model companion, ACFA.

ACFA is a supersimple theory for which the rank one definable sets
admit a fine structure theory along the lines of the Zilber trichotomy.

On general grounds, we know that the axioms for ACFA say the
structure is an existentially closed difference field and that the
existentially closedness condition may be expressed in terms of certain
resolvant formulas. Hrushovski presented much cleaner and more
elegant geometric axioms.
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Geometric axioms for ACFA

The class of existentially closed difference fields (K , +,×, 0, 1, σ) (ie the
models of ACFA) is axiomatized by

(K , +,×, 0, 1) is an algebraically closed field,

σ : K → K is a field automorphism, and

for each irreducible variety X over K and irreducible subvariety
Y ⊆ X × X σ for which the two projection maps are dominant, the set
{a ∈ X : (a, σ(a)) ∈ Y } is Zariski dense in X .
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A an algebraic variety X is irreducible if it cannot be expressed as the
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Algebraic dynamics in ACFA

Let f : X → X be an algebraic dynamical system defined over the field K
with X irreducible and f dominant.

X σ = X (since σ acts trivially on K )

Y := Graph(f ) = {(x , y) ∈ X × X : f (x) = y} is an irreducible
subvariety of X × X = X × X σ whose first projection map is onto X
and whose second projection map is dominant as its image agrees
with the image of f .
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Y := Graph(f ) = {(x , y) ∈ X × X : f (x) = y} is an irreducible
subvariety of X × X = X × X σ whose first projection map is onto X
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Algebraic dynamics in ACFA

Let f : X → X be an algebraic dynamical system defined over the field K
with X irreducible and f dominant.

Let L be a field extending K with an automorphism σ : L → L which
restricts to the identity on K and make (L, σ) |= ACFA.

X σ = X (since σ acts trivially on K )

Y := Graph(f ) = {(x , y) ∈ X × X : f (x) = y} is an irreducible
subvariety of X × X = X × X σ whose first projection map is onto X
and whose second projection map is dominant as its image agrees
with the image of f .

Hence, by the geometric axioms, the definable set
(X , f )] := {x ∈ X (L) : f (x) = σ(x)} is Zariski dense in X .

This is the starting point of the model theoretic approach to algebraic
dynamics: understand algebraic geometric properties of the dynamical
system f : X → X in terms of the model theoretic properties of the
definable set (X , f )].
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Proof of Poonen’s theorem

Theorem (Poonen)

If X is an irreducible variety defined over K = Fp
alg and f : X → X is a

dominant self-map, then the set of periodic points for f : X → X is Zariski
dense.

Proof.

Let Y ( X be a proper subvariety. We must find a periodic point
a ∈ X r Y .

If we were in a model of ACFA in which X and Y were fixed, there
would a point a ∈ X r Y with σ(a) = f (a).

Hrushovski showed that for every nonprincipal filter U on the set of
powers of primes

∏
U (Falg

q ,Fq) |= ACFA.

Hence, by  Loś’s theorem there is a q and a ∈ X r Y with
Fq(a) = σ(a) = f (a).

As every element of Falg
q is fixed by some power of the Frobenius, we

can find some ` > 0 for which f `(a) = F `
q(a) = a.
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Definable sets in ACFA

Theorem (Chatzidakis, Hrushovski, Peterzil)

ACFA satisfies the Zilber trichotomy.

X is trivial in the sense that all induced dependencies on X are
essentially binary,

X is group-like in the sense that there is a finite-to-finite definable
correspondence with a definable abelian group G all of whose
(quantifier free) definable sets in all Cartesian powers are finite
Boolean combinations of cosets, or

X is field-like in the sense that there is a definable field F and a
definable correspondence between X and F .
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Some consequences for dynamics

If f : X → X is defined over the fixed field of a model (K , σ) of ACFA,
then the set (X , f )] = {x ∈ X : f (x) = σ(x)} has finite Lascar rank and
may be analyzed in terms of types of Lascar rank one.
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If f : X → X is a dynamical system, then an invariant subvariety is a
subvariety Y ⊆ X for which f (Y ) ⊆ Y . A periodic subvariety is a
subvariety X ⊆ X which is invariant under f n for some n ∈ Z+.

If Y ⊆ X is a periodic subvariety (of period n, say) also defined over the
fixed field, then it corresponds to the definable subset
{x ∈ Y : σn(x) = f n(x)} of (X , f )], which is Zariski dense in f (Y ).

Corollary

Unless (X , f )] is analyzable by field-like sets, periodic subvarieties of
f : X → X are “rare.”
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A more precise version?

How can one tell into which class (X , f )] belongs?

Can one deduce more precise information about the induced structure
than simply the coarse trichotomy?
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Answers in one variable

For now let (K , σ) |= ACFA.
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Proposition

The following are equivalent.

(K , f )] is field-like.

f : K → K is a bijection.

f (x) = Axpm
+B

Cxpm+D
for some invertible matrix (

A B
C D

) and m ∈ N where

p is the characteristic of K (or is 1 if the characteristic of K is zero).

There is a definable bijection h : (K , f )] → (K , x 7→ xpm
) for some

m ∈ N where p is the characteristic of K (or is 1 if the characteristic
of K is zero).

Thomas Scanlon (UC Berkeley) Algebraic dynamics and definable sets 4 July 2008 17 / 28



Answers in one variable

For now let (K , σ) |= ACFA.

If f : K → K is a nonconstant rational function, then the set
(K , f )] := {x ∈ K : σ(x) = f (x)} has Lascar rank one.

Proposition

The following are equivalent.

(K , f )] is field-like.

f : K → K is a bijection.

f (x) = Axpm
+B

Cxpm+D
for some invertible matrix (

A B
C D

) and m ∈ N where

p is the characteristic of K (or is 1 if the characteristic of K is zero).

There is a definable bijection h : (K , f )] → (K , x 7→ xpm
) for some

m ∈ N where p is the characteristic of K (or is 1 if the characteristic
of K is zero).

Thomas Scanlon (UC Berkeley) Algebraic dynamics and definable sets 4 July 2008 17 / 28



Answers in one variable

For now let (K , σ) |= ACFA.

If f : K → K is a nonconstant rational function, then the set
(K , f )] := {x ∈ K : σ(x) = f (x)} has Lascar rank one.

Proposition

The following are equivalent.

(K , f )] is field-like.

f : K → K is a bijection.

f (x) = Axpm
+B

Cxpm+D
for some invertible matrix (

A B
C D

) and m ∈ N where

p is the characteristic of K (or is 1 if the characteristic of K is zero).

There is a definable bijection h : (K , f )] → (K , x 7→ xpm
) for some

m ∈ N where p is the characteristic of K (or is 1 if the characteristic
of K is zero).

Thomas Scanlon (UC Berkeley) Algebraic dynamics and definable sets 4 July 2008 17 / 28



Answers in one variable

For now let (K , σ) |= ACFA.

If f : K → K is a nonconstant rational function, then the set
(K , f )] := {x ∈ K : σ(x) = f (x)} has Lascar rank one.

Proposition

The following are equivalent.

(K , f )] is field-like.

f : K → K is a bijection.

f (x) = Axpm
+B

Cxpm+D
for some invertible matrix (

A B
C D

) and m ∈ N where

p is the characteristic of K (or is 1 if the characteristic of K is zero).

There is a definable bijection h : (K , f )] → (K , x 7→ xpm
) for some

m ∈ N where p is the characteristic of K (or is 1 if the characteristic
of K is zero).

Thomas Scanlon (UC Berkeley) Algebraic dynamics and definable sets 4 July 2008 17 / 28



Answers in one variable

For now let (K , σ) |= ACFA.

If f : K → K is a nonconstant rational function, then the set
(K , f )] := {x ∈ K : σ(x) = f (x)} has Lascar rank one.

Proposition

The following are equivalent.

(K , f )] is field-like.

f : K → K is a bijection.

f (x) = Axpm
+B

Cxpm+D
for some invertible matrix (

A B
C D

) and m ∈ N where

p is the characteristic of K (or is 1 if the characteristic of K is zero).

There is a definable bijection h : (K , f )] → (K , x 7→ xpm
) for some

m ∈ N where p is the characteristic of K (or is 1 if the characteristic
of K is zero).

Thomas Scanlon (UC Berkeley) Algebraic dynamics and definable sets 4 July 2008 17 / 28



Groups in one variable

Suppose that f (x) = xN for some N ∈ Z+.

(K×, f )] = {x ∈ K : x 6= 0 and f (x) = σ(x)} is a group under
multiplication.

As long as N > 1 and is not a power of the characteristic, f (x) is not

of the form Axpm
+B

Cxpm+D
.

Hence, under these conditions, by the trichotomy theorem, (K×, f )
must be “group-like” in the sense that every definable subset of any
Cartesian power is a finite Boolean combination of definable
subgroups.
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Suppose that f (x) = xN for some N ∈ Z+.

(K×, f )] = {x ∈ K : x 6= 0 and f (x) = σ(x)} is a group under
multiplication.

As long as N > 1 and is not a power of the characteristic, f (x) is not

of the form Axpm
+B

Cxpm+D
.

Hence, under these conditions, by the trichotomy theorem, (K×, f )
must be “group-like” in the sense that every definable subset of any
Cartesian power is a finite Boolean combination of definable
subgroups.

Question

How do the other group-like sets of the form (K , f )] look?
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Other group-like rational functions

If K has characteristic p > 0, then the set {x ∈ K : σ(x) =
∑

aix
pi}

is a group-like subgroup of (K , +) provided that at least two of the
coefficients are nonzero.

f (x) = C2(x) = x2 − 2, the second Chebyshev polynomial, satisfies
C2(x + 1

x ) = x2 + 1
x2 .

More generally, if G is a connected algebraic group of dimension one,
φ : G → Gσ is a map of algebraic groups with a nontrivial kernel, and
π : G → K is a rational function for which

G
φ−−−−→ Gσ

π

y yπσ

K
f−−−−→ K

commutes, then (K , f )] is group-like.

Thomas Scanlon (UC Berkeley) Algebraic dynamics and definable sets 4 July 2008 19 / 28



Other group-like rational functions

If K has characteristic p > 0, then the set {x ∈ K : σ(x) =
∑

aix
pi}

is a group-like subgroup of (K , +) provided that at least two of the
coefficients are nonzero.

f (x) = C2(x) = x2 − 2, the second Chebyshev polynomial, satisfies
C2(x + 1

x ) = x2 + 1
x2 .

More generally, if G is a connected algebraic group of dimension one,
φ : G → Gσ is a map of algebraic groups with a nontrivial kernel, and
π : G → K is a rational function for which

G
φ−−−−→ Gσ

π

y yπσ

K
f−−−−→ K

commutes, then (K , f )] is group-like.

Thomas Scanlon (UC Berkeley) Algebraic dynamics and definable sets 4 July 2008 19 / 28



Other group-like rational functions

If K has characteristic p > 0, then the set {x ∈ K : σ(x) =
∑

aix
pi}

is a group-like subgroup of (K , +) provided that at least two of the
coefficients are nonzero.

f (x) = C2(x) = x2 − 2, the second Chebyshev polynomial, satisfies
C2(x + 1

x ) = x2 + 1
x2 . Hence, the rational function g : K → K given

by x 7→ x + 1
x takes (K , x 7→ x2)] to (K ,C2)]. Thus, (K ,C2)] is

group-like.

More generally, if G is a connected algebraic group of dimension one,
φ : G → Gσ is a map of algebraic groups with a nontrivial kernel, and
π : G → K is a rational function for which

G
φ−−−−→ Gσ

π

y yπσ

K
f−−−−→ K

commutes, then (K , f )] is group-like.

Thomas Scanlon (UC Berkeley) Algebraic dynamics and definable sets 4 July 2008 19 / 28



Other group-like rational functions

If K has characteristic p > 0, then the set {x ∈ K : σ(x) =
∑

aix
pi}

is a group-like subgroup of (K , +) provided that at least two of the
coefficients are nonzero.

f (x) = C2(x) = x2 − 2, the second Chebyshev polynomial, satisfies
C2(x + 1

x ) = x2 + 1
x2 . Hence, the rational function g : K → K given

by x 7→ x + 1
x takes (K , x 7→ x2)] to (K ,C2)]. Thus, (K ,C2)] is

group-like.

More generally, if G is a connected algebraic group of dimension one,
φ : G → Gσ is a map of algebraic groups with a nontrivial kernel, and
π : G → K is a rational function for which

G
φ−−−−→ Gσ

π

y yπσ

K
f−−−−→ K

commutes, then (K , f )] is group-like.

Thomas Scanlon (UC Berkeley) Algebraic dynamics and definable sets 4 July 2008 19 / 28



Classification of group-like rational functions

If G is a connected algebraic group of dimension one, φ : G → Gσ is a
map of algebraic groups with a nontrivial kernel, and π : G → K is a
rational function for which
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map of algebraic groups with a nontrivial kernel, and π : G → K is a
rational function for which

G
φ−−−−→ Gσ

π

y yπσ

K
f−−−−→ K

commutes, then (K , f )] is group-like.

Theorem (Medvedev)

This is the only way a rational function f : K → K may produce a
group-like (K , f )]. Moreover, given a rational function f one may bound
the degree in the search for the relevant π as a function of the degree of f .
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map of algebraic groups with a nontrivial kernel, and π : G → K is a
rational function for which

G
φ−−−−→ Gσ

π

y yπσ

K
f−−−−→ K

commutes, then (K , f )] is group-like.

Theorem (Medvedev)

This is the only way a rational function f : K → K may produce a
group-like (K , f )]. Moreover, given a rational function f one may bound
the degree in the search for the relevant π as a function of the degree of f .

It follows that for any reasonable sense of “most,” most sets of the form
(K , f )] are trivial.
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Trivial sets

If f : K → K is a nonconstant rational function not covered by a group,
then (K , f )] is trivial.

Thomas Scanlon (UC Berkeley) Algebraic dynamics and definable sets 4 July 2008 21 / 28



Trivial sets

If f : K → K is a nonconstant rational function not covered by a group,
then (K , f )] is trivial. Hence, if X ⊆ Kn is irreducible and (skew)-periodic
for f , X must be a component of a variety defined by finitely many
equations of the form G (xi , xj) = 0.
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If f : K → K is a nonconstant rational function not covered by a group,
then (K , f )] is trivial. Hence, if X ⊆ Kn is irreducible and (skew)-periodic
for f , X must be a component of a variety defined by finitely many
equations of the form G (xi , xj) = 0.

Question

What can we say about the equations G (xi , xj) = 0?

In general, the situation is still opaque, but if we restrict to characteristic
zero and f being a polynomial, we can completely classify the possible
equations.

Theorem (Medvedev, Scanlon)

Suppose that K has characteristic zero and f is a polynomial with
coefficients from an algebraically closed subfield of the fixed field of σ and
that f cannot be expressed as a nontrivial compositional power. If (K , f )]

is trivial, then every irreducible f -periodic subvariety of Kn is a component
of a variety defined by finitely many equations of the form f `(xi ) = f k(xj).
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A number theoretic implication

Theorem

Let p be a prime number and g(x) ∈ Z[x ] a polynomial with integer
coefficients of degree at most p. Set f (x) = xp + pg(x). We assume that
f is not linearly conjugate to xp or the pth Chebyshev polynomial. Then if
X ⊆ Cn is an irreducible variety containing a Zariski dense set of points of
the form (ζ1, . . . , ζn) where each ζi is f -periodic, X must be a component
of a variety defined by equations of the form f `(xi ) = f k(xj).
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Heights

As a rule of thumb, if f : X → X is an algebraic dynamical system and
a ∈ X , then f (a) “more complicated” than a unless a is a preperiodic
point.

For any d ∈ Z+ we have h(xd) = dh(x).

More generally, if f (x) is a polynomial of degree d ≥ 2, then
h(f (x)) ≈ dh(x).

Defining the canonical height, ĥ(x) := lim h(f n(x))/dn, we obtain
ĥ(f (x)) = dĥ(x).

Even more generally, if f : X → X is a “polarized” algebraic
dynamical system, there is an associated integer d ≥ 2 and a
canonical height function ĥ : X (Qalg) → R≥0 satisfying

ĥ(f (x)) = df̂ (x).
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canonical height function ĥ : X (Qalg) → R≥0 satisfying
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canonical height function ĥ : X (Qalg) → R≥0 satisfying
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ĥ(f (x)) = df̂ (x).
Thomas Scanlon (UC Berkeley) Algebraic dynamics and definable sets 4 July 2008 23 / 28



Heights

As a rule of thumb, if f : X → X is an algebraic dynamical system and
a ∈ X , then f (a) “more complicated” than a unless a is a preperiodic
point.

Here, “more complicated” means “of larger height.” Let me explain with
an example.

On Q one may define the logarithmic height, h : Q× → R≥0, by
h( a

b ) := max{ln |a|, ln |b|} as long as a
b is written in lowest terms.

For any d ∈ Z+ we have h(xd) = dh(x).
More generally, if f (x) is a polynomial of degree d ≥ 2, then
h(f (x)) ≈ dh(x).
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Heights on function fields

On C(t), define h(f /g) := max{deg(f ), deg(g)}, again when f and g are
relatively prime polynomials.
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As with dynamical systems over Q, if f : X → X is a polarized dynamical
system over C(t), (it would not hurt to think of the case that f is given by
a rational function of degree at least two) then there is a canonical height
ĥ : X (C(t)alg) → R≥0 satisfying |ĥ(x)− h(x)| is bounded and ĥ ◦ f = d · ĥ
for some d ≥ 2.
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relatively prime polynomials.

Note h(f ) = 0 iff f ∈ C×.

As with dynamical systems over Q, if f : X → X is a polarized dynamical
system over C(t), (it would not hurt to think of the case that f is given by
a rational function of degree at least two) then there is a canonical height
ĥ : X (C(t)alg) → R≥0 satisfying |ĥ(x)− h(x)| is bounded and ĥ ◦ f = d · ĥ
for some d ≥ 2.

If f : X → X were actually defined over C, then for any a ∈ X (C), we
would have f (a) ∈ X (C) also. Hence, for every n we would have
h(f n(a)) = 0 so that ĥ(a) = lim h(f n(a))/dn = 0.
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Baker’s theorem

Theorem (M. Baker)

Suppose that f ∈ C(t, s) is a rational function in the variables t and s
over C which when considered as a rational function in the variable s with
coefficients from C(t) has degree at least two. If there is some
non-f -preperiodic point a ∈ C(t) with ĥ(a) = 0, then f is essentially
defined over C in the sense that there is a rational function f̃ ∈ C(s) and
a fractional linear transformation γ defined over C(t) with f = γ−1 ◦ f̃ ◦ γ.
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defined over C in the sense that there is a rational function f̃ ∈ C(s) and
a fractional linear transformation γ defined over C(t) with f = γ−1 ◦ f̃ ◦ γ.

Baker’s proof is geometric and uses capacity theory.
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Logical reformulation: bounded sets

C(t) is not interpretable in C, but it is naturally expressed as a countable
union of sets interpretable in C on which the algebraic operations of C(t)
are piecewise definable.
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Logical reformulation: bounded sets

C(t) is not interpretable in C, but it is naturally expressed as a countable
union of sets interpretable in C on which the algebraic operations of C(t)
are piecewise definable.

As such, relative to this identification, every quantifier-free definable set in
C(t)m may be understood as a countable union of sets interpretable in C.

Definition

Let X be a variety defined over C(t). We say that B ⊆ X (C(t)) is
bounded if relative to the natural presentation of C(t) as a countable
union of sets defined in C, B is contained in a union of finitely many sets
defined in C.
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Logical reformulation: a theorem

Theorem (Chatzidakis, Hrushovski)

Let f : X → X be a dominant algebraic dynamical system defined over
C(t) assumed to be primitive. Then there is an infinite bounded
f -invariant subset of X (C(t)) if and only if f : X → X is isomorphic to a
dynamical system defined over C.

The theorem on heights follows, as the set {a ∈ X (C(t)) : ĥ(a) = 0}
is necessarily bounded, but would contain the infinite orbit
Of (a) := {f n(a) : n ∈ N} if there were some non-preperiodic point a.

The proof proceeds by extracting from the invariant bounded set a
dynamical system g : Y → Y defined over C which is in some
obvious way related to f : X → X .

The isomorphism is produced via the theory of quantifier-free
canonical bases.
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