Projective absoluteness and thin equivalence relations

Philipp Schlicht

Institut für Mathematische Logik und Grundlagenforschung, Universität Münster

Logic Colloquium Bern, July 3, 2008

Outline

Definitions and previous results

2 Results

- Thin equivalence relations and reasonable forcing
- Thin equivalence relations and Σ_2^1 c.c.c. forcing

Projective absoluteness

Definition

Generic Σ_n^1 absoluteness holds for a forcing \mathbb{P} if $V \prec_{\Sigma_n^1} V^{\mathbb{P}}$.

Theorem

(Shoenfield 1961) Σ_2^1 absoluteness holds for any forcing.

Theorem

(Woodin 1981) $\prod_{n=1}^{1}$ determinacy implies Σ_{n+2}^{1} absoluteness for Cohen forcing and random forcing.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definitions and previous results

Projective absoluteness

Definition

Generic Σ_n^1 absoluteness holds for a forcing \mathbb{P} if $V \prec_{\Sigma_n^1} V^{\mathbb{P}}$.

Theorem

(Shoenfield 1961) Σ_2^1 absoluteness holds for any forcing.

Theorem

(Woodin 1981) $\prod_{n=1}^{1}$ determinacy implies Σ_{n+2}^{1} absoluteness for Cohen forcing and random forcing.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Projective absoluteness

Definition

Generic Σ_n^1 absoluteness holds for a forcing \mathbb{P} if $V \prec_{\Sigma_n^1} V^{\mathbb{P}}$.

Theorem

(Shoenfield 1961) Σ_2^1 absoluteness holds for any forcing.

Theorem

(Woodin 1981) $\prod_{n=1}^{1}$ determinacy implies Σ_{n+2}^{1} absoluteness for Cohen forcing and random forcing.

Thin equivalence relations

Definition

An equivalence relation E on Baire space (the reals) is thin if there is no perfect set (i.e. a nonempty closed set without isolated points) of pairwise inequivalent reals. A prewellorder is a wellfounded linear preorder on the reals.

Fact

Every prewellorder induces an equivalence relation. If Π_n^1 determinacy holds, then all Σ_{n+1}^1 and Π_{n+1}^1 prewellorders induce thin equivalence relations.

Thin equivalence relations

Definition

An equivalence relation E on Baire space (the reals) is thin if there is no perfect set (i.e. a nonempty closed set without isolated points) of pairwise inequivalent reals. A prewellorder is a wellfounded linear preorder on the reals.

Fact

Every prewellorder induces an equivalence relation. If Π_n^1 determinacy holds, then all Σ_{n+1}^1 and Π_{n+1}^1 prewellorders induce thin equivalence relations.

・ 同 ト ・ ヨ ト ・ ヨ ト

Equivalence relations in forcing extensions

Definition

If a set of reals *E* is given by a fixed definition, we write *E* for the set in $V^{\mathbb{P}}$ with the same definition.

Fact

If E is a thin provably \underline{A}_{n+1}^1 equivalence relation and generic Σ_n^1 absoluteness holds for \mathbb{P} , then $E^{V^{\mathbb{P}}} \cap V = E$.

The issue is whether the forcing introduces new equivalence classes to *E*.

▲ □ ▶ ▲ □ ▶ ▲

Equivalence relations in forcing extensions

Definition

If a set of reals *E* is given by a fixed definition, we write *E* for the set in $V^{\mathbb{P}}$ with the same definition.

Fact

If E is a thin provably \underline{A}_{n+1}^1 equivalence relation and generic Σ_n^1 absoluteness holds for \mathbb{P} , then $E^{V^{\mathbb{P}}} \cap V = E$.

The issue is whether the forcing introduces new equivalence classes to *E*.

Equivalence relations in forcing extensions

Definition

If a set of reals *E* is given by a fixed definition, we write *E* for the set in $V^{\mathbb{P}}$ with the same definition.

Fact

If E is a thin provably \underline{A}_{n+1}^1 equivalence relation and generic Σ_n^1 absoluteness holds for \mathbb{P} , then $E^{V^{\mathbb{P}}} \cap V = E$.

The issue is whether the forcing introduces new equivalence classes to E.

Equivalence relations and absoluteness

Lemma

Suppose a forcing \mathbb{P} does not introduce new equivalence classes to all thin provably $\underline{\Delta}_n^1$ equivalence relations. Then Σ_{n+1}^1 absoluteness holds for \mathbb{P} .

Proof:

We want to show Σ_{k+1}^1 absoluteness by induction for $k \leq n$. Suppose ϕ is a Π_k^1 formula and there is some real $r \in V^{\mathbb{P}}$ with $V^{\mathbb{P}} \vDash \phi(r)$. Define $(x, y) \in E$ iff

 $(\phi(x) \land \phi(y)) \lor (\neg \phi(x) \land \neg \phi(y))$

Then there is a real x in V with $\phi(x)$.

・ 同 ト ・ 三 ト ・

Equivalence relations and absoluteness

Lemma

Suppose a forcing \mathbb{P} does not introduce new equivalence classes to all thin provably $\underline{\lambda}_n^1$ equivalence relations. Then Σ_{n+1}^1 absoluteness holds for \mathbb{P} .

Proof:

We want to show Σ_{k+1}^1 absoluteness by induction for $k \leq n$. Suppose ϕ is a Π_k^1 formula and there is some real $r \in V^{\mathbb{P}}$ with $V^{\mathbb{P}} \vDash \phi(r)$. Define $(x, y) \in E$ iff

$$(\phi(x) \land \phi(y)) \lor (\neg \phi(x) \land \neg \phi(y))$$

Then there is a real x in V with $\phi(x)$.

The effect of large cardinals

Theorem

(Foreman, Magidor 1995) Let E be a thin equivalence relation with a tree representation which is absolute for forcing of size $< \kappa$. Then reasonable forcing of size $< \kappa$ does not introduce new equivalence classes to E.

Combined with a result of Martin and Steel this shows

Theorem

Suppose κ is a limit of Woodin cardinals. Then reasonable forcing of size $< \kappa$ does not add equivalence classes to thin projective equivalence relations.

We strengthen the results of Woodin and of Foreman and Magidor simultaneously.

< ロ > < 同 > < 回 > < 回 >

The effect of large cardinals

Theorem

(Foreman, Magidor 1995) Let E be a thin equivalence relation with a tree representation which is absolute for forcing of size $< \kappa$. Then reasonable forcing of size $< \kappa$ does not introduce new equivalence classes to E.

Combined with a result of Martin and Steel this shows

Theorem

Suppose κ is a limit of Woodin cardinals. Then reasonable forcing of size $< \kappa$ does not add equivalence classes to thin projective equivalence relations.

We strengthen the results of Woodin and of Foreman and Magidor simultaneously.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $M_n^{\#}$ is a transitive set of the form $J_{\alpha}[\vec{E}]$ where \vec{E} is a sequence of extenders. It is iterable in the sense of iteration trees and contains n Woodin cardinals. More exactly:

Definition

 $M^{\#}$

 $M_n^{\#}(X)$ is a minimal ω_1 -iterable sound X-premouse with $\rho_1 \leq \sup(tc(X \cup \omega))$ and an extender above *n* Woodin cardinals, if this exists.

Theorem

(Harrington, Martin, Neeman, Woodin) The existence of $M_n^{\#}(x)$ for all reals x is equivalent to $\prod_{n=1}^{1}$ determinacy.

イロト イポト イヨト イヨト

-

 $M_n^{\#}$ is a transitive set of the form $J_{\alpha}[\vec{E}]$ where \vec{E} is a sequence of extenders. It is iterable in the sense of iteration trees and contains n Woodin cardinals. More exactly:

Definition

 $M^{\#}$

 $M_n^{\#}(X)$ is a minimal ω_1 -iterable sound X-premouse with $\rho_1 \leq \sup(tc(X \cup \omega))$ and an extender above *n* Woodin cardinals, if this exists.

Theorem

(Harrington, Martin, Neeman, Woodin) The existence of $M_n^{\#}(x)$ for all reals x is equivalent to Π_{n+1}^1 determinacy.

(日) (四) (日) (日) (日) (日)

Properties of $M_n^{\#}$

Lemma

(Woodin) $M_n^{\#}(X)$ can calculate which Σ_{n+2}^1 statements are true in V. For even n we have $M_n^{\#}(X) \prec_{\Sigma_{n+2}^1} V$. For odd n any Σ_{n+2}^1 statement holds in V iff it is forced over $M_n^{\#}(X)$ by collapsing the least Woodin cardinal.

Hence if $M_n^{\#}(x)$ is absolute for every real x we get $V \prec_{\Sigma_{n+2}^1} V^{\mathbb{P}}$.

.emma

(Folklore) Suppose $M_n^{\#}(X)$ exists for every $X \in H_{\kappa^+}$ and is κ^+ -iterable. Then this also holds in $V^{\mathbb{P}}$ for every forcing \mathbb{P} of size κ .

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties of $M_n^{\#}$

Lemma

(Woodin) $M_n^{\#}(X)$ can calculate which Σ_{n+2}^1 statements are true in V. For even n we have $M_n^{\#}(X) \prec_{\Sigma_{n+2}^1} V$. For odd n any Σ_{n+2}^1 statement holds in V iff it is forced over $M_n^{\#}(X)$ by collapsing the least Woodin cardinal.

Hence if $M_n^{\#}(x)$ is absolute for every real x we get $V \prec_{\Sigma_{n+2}^1} V^{\mathbb{P}}$.

Lemma

(Folklore) Suppose $M_n^{\#}(X)$ exists for every $X \in H_{\kappa^+}$ and is κ^+ -iterable. Then this also holds in $V^{\mathbb{P}}$ for every forcing \mathbb{P} of size κ .

Thin equivalence relations and reasonable forcing Thin equivalence relations and Σ_2^1 c.c.c. forcing

Projective absoluteness

Lemma

(S.) Suppose $M_n^{\#}(X)$ exists for every $X \in H_{\kappa^+}$ and is κ^+ -iterable. Then Σ_{n+3}^1 -absoluteness holds for every reasonable forcing \mathbb{P} of size κ .

The proof is a simple case of the proof of the next theorem.

Key lemma

If \mathbb{P} is a forcing and τ is a \mathbb{P} -name, we write τ and τ' for the corresponding $\mathbb{P} \times \mathbb{P}$ -names.

emma

(S.) Let E be a thin \prod_{n+3}^{1} equivalence relation. Suppose \mathbb{P} is a forcing of size κ and $M_{n}^{\#}(X)$ exists for every $X \in H_{\kappa^{+}}$. Then for every \mathbb{P} -name τ for a real the set

$$D := \{ p \in \mathbb{P} : (p, p) \Vdash_{\mathbb{P} \times \mathbb{P}} \tau E \tau' \}$$

is dense.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If \mathbb{P} is a forcing and τ is a \mathbb{P} -name, we write τ and τ' for the corresponding $\mathbb{P} \times \mathbb{P}$ -names.

Lemma

(S.) Let E be a thin \prod_{n+3}^{1} equivalence relation. Suppose \mathbb{P} is a forcing of size κ and $\widetilde{M}_{n}^{\#}(X)$ exists for every $X \in H_{\kappa^{+}}$. Then for every \mathbb{P} -name τ for a real the set

$$D := \{ p \in \mathbb{P} : (p, p) \Vdash_{\mathbb{P} \times \mathbb{P}} \tau E \tau' \}$$

is dense.

- suppose *E* is $\Pi_{n+3}^1(z)$
- suppose D is not dense
- there is a condition $p \in \mathbb{P}$ so that for every $q \leq p$ there are $r, u \leq q$ with

$$(r,s) \Vdash_{\mathbb{P} imes \mathbb{P}} \neg au E au'$$

- let $H \prec V_{\lambda}$ be countable with $\mathbb{P}, p, z, \tau \in H$, where V_{λ} is sufficiently elementary in V
- let $\pi: \overline{H} \to H$ be the uncollapsing map, $\pi(\overline{\mathbb{P}}) = \mathbb{P}$, $\pi(\overline{p}) = p$, and $\pi(\overline{\tau}) = \tau$

t

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof

We enumerate the open dense subsets in \bar{H} of $\bar{\mathbb{P}} \times \bar{\mathbb{P}}$ as $(D_n : n < \omega)$ and construct a family $(p_s : s \in 2^{<\omega})$ of conditions in \mathbb{P} such that

$$p_{\emptyset} = \bar{p}$$

$$p_{s} \leq p_{t} \text{ if } t \subseteq s$$

$$(p_{s \sim 0}, p_{s \sim 1}) \Vdash_{\bar{\mathbb{P}} \times \bar{\mathbb{P}}} \neg \bar{\tau} E \bar{\tau}'$$

$$p_{s} \text{ decides } \bar{\tau} \upharpoonright lh(s)$$

$$(p_{s}, p_{t}) \in D_{0} \cap D_{1} \cap ... \cap D_{i} \text{ if } s, t \in 2^{i} \text{ and } s \neq$$
for $s, t \in 2^{<\omega}$.

for
$$x \in 2^{\omega}$$
 let

$$g_{\mathsf{x}} := \{q \in \bar{\mathbb{P}} : \exists n \in \omega \, p_{\mathsf{x}|n} \leq q\}$$

• then g_x and g_y are mutually $\overline{\mathbb{P}}$ -generic over \overline{H} for $x \neq y$ so

$$\bar{H}[g_x,g_y] \vDash \neg \bar{\tau}^{g_x} E \bar{\tau}^{g_y}$$

- we have $\bar{H}[g_x, g_y] \prec_{\Sigma_{n+2}^1} V$ since $\bar{H}[g_x, g_y]$ computes $M_n^{\#}(z)$ correctly for each $z \in \mathbb{R} \cap \bar{H}[g_x, g_y]$.
- then $V \vDash \neg \overline{\tau}^{g_x} E \overline{\tau}^{g_y}$ since E is $\Pi^1_{n+3}(a)$
- now \(\bar{\bar{\alpha}}^{g_x}\) depends continuously on \(x\)
- one would have a perfect set of pairwise inequivalent reals in V

Thin equivalence relations and reasonable forcing Thin equivalence relations and Σ_2^1 c.c.c. forcing

Reasonable forcing and equivalence classes

Theorem

(S.) Suppose $M_n^{\#}(X)$ exists for every $X \in H_{\kappa^+}$ and is κ^+ -iterable. Then reasonable forcing of size κ does not add equivalence classes to thin provably $\underline{\Delta}_{n+3}^1$ equivalence relations.

・ 同 ト ・ ヨ ト ・ ヨ ト

- let *E* be a thin provably $\Delta_{n+3}^1(r)$ equivalence relation
- \blacksquare suppose a reasonable forcing $\mathbb P$ adds an equivalence class to E
- let τ be a \mathbb{P} -name for a real and $p \in \mathbb{P}$ a condition such that for every $x \in \mathbb{R}$ we have $p \Vdash_{\mathbb{P}} \neg \check{x} E \tau$
- Let $q \leq p$ be a condition with

$$(q,q) \Vdash_{\mathbb{P} imes \mathbb{P}} \tau E \tau'$$

• since \mathbb{P} is reasonable, there is a countable $H \prec V_{\lambda}$ with $r, \mathbb{P}, q, \tau \in H$ and λ sufficiently large, and a condition $r \leq q$, such that for every maximal antichain $A \subseteq \mathbb{P}$ with $A \in H$ the set $A \cap H$ is predense below q

• let $\pi: \overline{H} \to H$ be the uncollapsing map and $\pi(\overline{\mathbb{P}}) = \mathbb{P}$, $\pi(\overline{q}) = q, \ \pi(\overline{\tau}) = \tau$

- let g_0 be $\bar{\mathbb{P}}$ -generic over \bar{H} in V with $q \in g_0$
- let G be \mathbb{P} -generic over V with $r \in G$ and define $g_1 := \pi^{-1}{}''G$
- then $ar{q} \in g_1$
- Now g_1 is $\overline{\mathbb{P}}$ -generic over \overline{H} :
 - suppose $D\in ar{H}$ is a dense subset of $ar{\mathbb{P}}$
 - then $H \vDash "\pi(D)$ is dense in \mathbb{P} "
 - $\pi(D) \cap H$ is predense below r since r is (H, \mathbb{P}) -generic
 - since $r \in G$ this implies $G \cap \pi(D) \cap H \neq \emptyset$
 - so $g_1 \cap D \neq \emptyset$

- let g_0 be $\bar{\mathbb{P}}$ -generic over \bar{H} in V with $q \in g_0$
- let G be \mathbb{P} -generic over V with $r \in G$ and define $g_1 := \pi^{-1}{}''G$

• then
$$ar{q}\in g_1$$

- Now g_1 is $\overline{\mathbb{P}}$ -generic over \overline{H} :
 - suppose $D \in \overline{H}$ is a dense subset of $\overline{\mathbb{P}}$
 - then $H \vDash "\pi(D)$ is dense in \mathbb{P} "
 - $\pi(D) \cap H$ is predense below r since r is (H, \mathbb{P}) -generic
 - since $r \in G$ this implies $G \cap \pi(D) \cap H \neq \emptyset$
 - so $g_1 \cap D \neq \emptyset$

Proof

- now let h be $\bar{\mathbb{P}}$ -generic over both $\bar{H}[g_0]$ and $\bar{H}[g_1]$ in V with $\bar{q} \in h$
- let $x_0 := \overline{\tau}^{g_0}$, $x_1 := \overline{\tau}^{g_1}$, and $y := \overline{\tau}^h$
- then $x_1 = au^G$
- we have $\overline{H}[g_0, h] \vDash x_0 Ey$ and $\overline{H}[g_1, h] \vDash x_1 Ey$ since $(\overline{q}, \overline{q}) \Vdash_{\overline{\mathbb{P}} \times \overline{\mathbb{P}}}^{\overline{H}} \overline{\tau} E \overline{\tau}'$
- $\bar{H}[g_i, h]$ calculates $M_n^{\#}(x)$ correctly by the previous lemma
- hence $\bar{H}[g_i,h] \prec_{\Sigma_{n+2}^1} V$
- then x_0 , x_1 , and y are E-equivalent since E is provably $\Delta^1_{n+3}(r)$
- but we assumed that $x_0 \in V$ and that x_1 is in a new equivalence class, a contradiction

Thin equivalence relations and reasonable forcing Thin equivalence relations and Σ_2^1 c.c.c. forcing

Projective forcing

Definition

A forcing (\mathbb{P}, \leq) is called a Σ_n^1 forcing if $\mathbb{P} \subseteq \mathbb{R}$ and both \leq and \perp are Σ_n^1 sets.

For example Cohen forcing, random forcing, and Amoeba forcing are Σ_1^1 (also called Suslin forcings) and also c.c.c.

Thin equivalence relations and reasonable forcing Thin equivalence relations and Σ_2^1 c.c.c. forcing

Projective forcing

Definition

A forcing (\mathbb{P}, \leq) is called a Σ_n^1 forcing if $\mathbb{P} \subseteq \mathbb{R}$ and both \leq and \perp are Σ_n^1 sets.

For example Cohen forcing, random forcing, and Amoeba forcing are Σ^1_1 (also called Suslin forcings) and also c.c.c.

Thin equivalence relations and reasonable forcing Thin equivalence relations and Σ_2^1 c.c.c. forcing

Results for Σ_2^1 forcing

We have analogues of the previous results for Σ_2^1 c.c.c. forcing.

_emma

(S.) Suppose $M_n^{\#}(x)$ exists for every $x \in \mathbb{R}$. Then this holds in any generic extension by a Σ_2^1 c.c.c. forcing.

(日) (同) (三) (三)

Thin equivalence relations and reasonable forcing Thin equivalence relations and Σ_2^1 c.c.c. forcing

Results for Σ_2^1 forcing

We have analogues of the previous results for Σ_2^1 c.c.c. forcing.

Lemma

(S.) Suppose $M_n^{\#}(x)$ exists for every $x \in \mathbb{R}$. Then this holds in any generic extension by a Σ_2^1 c.c.c. forcing.

Thin equivalence relations and reasonable forcing Thin equivalence relations and Σ_2^1 c.c.c. forcing

Results for Σ_2^1 forcing

Lemma

(S.) Suppose $M_n^{\#}(x)$ exists for every $x \in \mathbb{R}$. Then Σ_{n+3}^1 -absoluteness holds for every Σ_2^1 c.c.c. forcing \mathbb{P} .

Theorem

(S.) Suppose $M_n^{\#}(x)$ exists for every $x \in \mathbb{R}$. Then $\sum_{n=1}^{1} c.c.c.$ forcing does not add equivalence classes to thin provably Δ_{n+3}^{1} equivalence relations.

An open question

- can the results about thin equivalence relations and \sum_{2}^{1} c.c.c. forcing be extended to projective c.c.c. forcing?
- thank you for listening!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶