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Projective absoluteness

Definition

Generic Σ1
n absoluteness holds for a forcing P if V ≺Σ1

n
V P.

Theorem

(Shoenfield 1961) Σ1
2 absoluteness holds for any forcing.

Theorem

(Woodin 1981) Π˜1
n determinacy implies Σ1

n+2 absoluteness for
Cohen forcing and random forcing.
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Thin equivalence relations

Definition
An equivalence relation E on Baire space (the reals) is thin if there
is no perfect set (i.e. a nonempty closed set without isolated
points) of pairwise inequivalent reals.
A prewellorder is a wellfounded linear preorder on the reals.

Fact
Every prewellorder induces an equivalence relation.
If Π˜1

n determinacy holds, then all Σ˜1
n+1 and Π˜1

n+1 prewellorders
induce thin equivalence relations.
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Equivalence relations in forcing extensions

Definition
If a set of reals E is given by a fixed definition, we write E for the
set in V P with the same definition.

Fact

If E is a thin provably ∆˜1
n+1 equivalence relation and generic Σ1

n

absoluteness holds for P, then EV P ∩V = E.

The issue is whether the forcing introduces new equivalence classes
to E .
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Equivalence relations and absoluteness

Lemma
Suppose a forcing P does not introduce new equivalence classes to
all thin provably ∆˜1

n equivalence relations. Then Σ1
n+1 absoluteness

holds for P.

Proof:
We want to show Σ1

k+1 absoluteness by induction for k ≤ n.
Suppose φ is a Π1

k formula and there is some real r ∈ V P with
V P � φ(r). Define (x ,y) ∈ E iff

(φ(x)∧φ(y))∨ (¬φ(x)∧¬φ(y))

Then there is a real x in V with φ(x).
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The effect of large cardinals

Theorem
(Foreman, Magidor 1995) Let E be a thin equivalence relation with
a tree representation which is absolute for forcing of size < κ . Then
reasonable forcing of size < κ does not introduce new equivalence
classes to E .

Combined with a result of Martin and Steel this shows

Theorem
Suppose κ is a limit of Woodin cardinals. Then reasonable forcing
of size < κ does not add equivalence classes to thin projective
equivalence relations.

We strengthen the results of Woodin and of Foreman and Magidor
simultaneously.
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Thin equivalence relations and reasonable forcing
Thin equivalence relations and Σ1

2 c.c.c. forcing

M#
n

M#
n is a transitive set of the form Jα [~E ] where ~E is a sequence of

extenders. It is iterable in the sense of iteration trees and contains
n Woodin cardinals. More exactly:

Definition

M#
n(X ) is a minimal ω1-iterable sound X -premouse with

ρ1 ≤ sup(tc(X ∪ω)) and an extender above n Woodin cardinals, if
this exists.

Theorem

(Harrington, Martin, Neeman, Woodin) The existence of M#
n(x) for

all reals x is equivalent to Π˜1
n+1 determinacy.
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2 c.c.c. forcing

Properties of M#
n

Lemma

(Woodin) M#
n(X ) can calculate which Σ1

n+2 statements are true in
V .
For even n we have M#

n(X )≺Σ1
n+2

V .
For odd n any Σ1

n+2 statement holds in V iff it is forced over
M#

n(X ) by collapsing the least Woodin cardinal.

Hence if M#
n(x) is absolute for every real x we get V ≺Σ1

n+2
V P.

Lemma

(Folklore) Suppose M#
n(X ) exists for every X ∈ Hκ+ and is

κ+-iterable. Then this also holds in V P for every forcing P of size
κ .
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2 c.c.c. forcing

Projective absoluteness

Lemma

(S.) Suppose M#
n(X ) exists for every X ∈ Hκ+ and is κ+-iterable.

Then Σ1
n+3-absoluteness holds for every reasonable forcing P of size

κ .

The proof is a simple case of the proof of the next theorem.
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Key lemma

If P is a forcing and τ is a P-name, we write τ and τ ′ for the
corresponding P×P-names.

Lemma

(S.) Let E be a thin Π˜1
n+3 equivalence relation. Suppose P is a

forcing of size κ and M#
n(X ) exists for every X ∈ Hκ+ . Then for

every P-name τ for a real the set

D := {p ∈ P : (p,p) 
P×P τEτ
′}

is dense.
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2 c.c.c. forcing

Proof

suppose E is Π1
n+3(z)

suppose D is not dense
there is a condition p ∈ P so that for every q ≤ p there are
r ,u ≤ q with

(r ,s) 
P×P ¬τEτ
′

let H ≺ Vλ be countable with P,p,z ,τ ∈ H , where Vλ is
sufficiently elementary in V
let π : H̄ → H be the uncollapsing map, π(P̄) = P, π(p̄) = p,
and π(τ̄) = τ
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2 c.c.c. forcing

Proof

We enumerate the open dense subsets in H̄ of P̄× P̄ as (Dn : n < ω)
and construct a family (ps : s ∈ 2<ω) of conditions in P such that

p /0 = p̄
ps ≤ pt if t ⊆ s
(psa0,psa1) 
P̄×P̄ ¬τ̄E τ̄ ′

ps decides τ̄ � lh(s)
(ps ,pt) ∈ D0∩D1∩ ...∩Di if s, t ∈ 2i and s 6= t

for s, t ∈ 2<ω .
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Proof

for x ∈ 2ω let

gx := {q ∈ P̄ : ∃n ∈ ω px |n ≤ q}

then gx and gy are mutually P̄-generic over H̄ for x 6= y so

H̄[gx ,gy ] � ¬τ̄
gx E τ̄

gy

we have H̄[gx ,gy ]≺Σ1
n+2

V since H̄[gx ,gy ] computes M#
n(z)

correctly for each z ∈ R∩ H̄[gx ,gy ].
then V � ¬τ̄gx E τ̄gy since E is Π1

n+3(a)
now τ̄gx depends continuously on x
one would have a perfect set of pairwise inequivalent reals in V
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Reasonable forcing and equivalence classes

Theorem

(S.) Suppose M#
n(X ) exists for every X ∈ Hκ+ and is κ+-iterable.

Then reasonable forcing of size κ does not add equivalence classes
to thin provably ∆˜1

n+3 equivalence relations.
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Proof

let E be a thin provably ∆1
n+3(r) equivalence relation

suppose a reasonable forcing P adds an equivalence class to E
let τ be a P-name for a real and p ∈ P a condition such that
for every x ∈ R we have p 
P ¬x̌Eτ

Let q ≤ p be a condition with

(q,q) 
P×P τEτ
′

since P is reasonable, there is a countable H ≺ Vλ with
r ,P,q,τ ∈ H and λ sufficiently large, and a condition r ≤ q,
such that for every maximal antichain A⊆ P with A ∈ H the
set A∩H is predense below q
let π : H̄ → H be the uncollapsing map and π(P̄) = P,
π(q̄) = q, π(τ̄) = τ
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2 c.c.c. forcing

Proof

let g0 be P̄-generic over H̄ in V with q ∈ g0

let G be P-generic over V with r ∈ G and define g1 := π−1′′G
then q̄ ∈ g1

Now g1 is P̄-generic over H̄:

suppose D ∈ H̄ is a dense subset of P̄
then H � ”π(D) is dense in P”

π(D)∩H is predense below r since r is (H,P)-generic
since r ∈ G this implies G ∩π(D)∩H 6= /0

so g1∩D 6= /0
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2 c.c.c. forcing

Proof

now let h be P̄-generic over both H̄[g0] and H̄[g1] in V with
q̄ ∈ h
let x0 := τ̄g0 , x1 := τ̄g1 , and y := τ̄h

then x1 = τG

we have H̄[g0,h] � x0Ey and H̄[g1,h] � x1Ey since
(q̄, q̄) 
H̄

P̄×P̄ τ̄E τ̄ ′

H̄[gi ,h] calculates M#
n(x) correctly by the previous lemma

hence H̄[gi ,h]≺Σ1
n+2

V

then x0, x1, and y are E -equivalent since E is provably ∆1
n+3(r)

but we assumed that x0 ∈ V and that x1 is in a new
equivalence class, a contradiction
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Projective forcing

Definition

A forcing (P,≤) is called a Σ˜1
n forcing if P⊆ R and both ≤ and ⊥

are Σ˜1
n sets.

For example Cohen forcing, random forcing, and Amoeba forcing
are Σ˜1

1 (also called Suslin forcings) and also c.c.c.
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Results for Σ1
2 forcing

We have analogues of the previous results for Σ˜1
2 c.c.c. forcing.

Lemma

(S.) Suppose M#
n(x) exists for every x ∈ R. Then this holds in any

generic extension by a Σ˜1
2 c.c.c. forcing.
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Results for Σ1
2 forcing

Lemma

(S.) Suppose M#
n(x) exists for every x ∈ R. Then

Σ1
n+3-absoluteness holds for every Σ˜1

2 c.c.c. forcing P.

Theorem

(S.) Suppose M#
n(x) exists for every x ∈ R. Then Σ˜1

2 c.c.c. forcing
does not add equivalence classes to thin provably ∆˜1

n+3 equivalence
relations.
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An open question

can the results about thin equivalence relations and Σ˜1
2 c.c.c.

forcing be extended to projective c.c.c. forcing?
thank you for listening!
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