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Definable equivalence relations

De�nable equivalence relations on standard Borel spaces have been
studied extensively by descriptive set theorists during the last few
decades (Jackson, Hjorth, Kechris, Louveau, . . . ).

An interesting feature of the subject is its close interaction with other
areas of mathematics. For example, the study of the orbit equivalence
relations of Polish group actions uses tools from topological dynamics,
while countable equivalence relations are intimately connected with
ergodic theory.



Measured equivalence relations

(X, µ) is a standard probability space (X is a standard Borel
space and µ a non-atomic, Borel, probability measure ([0, 1],
Lebesgue measure)).
An equivalence relation E on X is Borel if E ⊆ X2 is Borel and
countable if all equivalence classes are countable.
¿e orbit equivalence relation of a group action Γ↷ X is de�ned
by

x1 EXΓ x2 ⇐⇒ ∃γ ∈ Γ γ ⋅ x1 = x2.
Every countable Borel equivalence relation is the orbit
equivalence relation of a Borel action of a countable group
(Feldman and Moore).
E is calledmeasure-preserving if it is generated by a
measure-preserving group action. It is ergodic if every
E-invariant set is either null or conull.

Null sets will be routinely ignored and all statements hold only
almost everywhere.
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Orbit equivalence

De�nition
Two measure-preserving equivalence relation E and F on spaces
(X, µ) and (Y,ν), respectively are isomorphic if there are invariant
Borel sets A⊆ X and B ⊆ Y of full measure and a measure-preserving
map f∶A→ B such that

x1 E x2 ⇐⇒ f(x1)F f(x2).

Two measure-preserving actions Γ↷ (X, µ) and ∆↷ (Y,ν) are
called orbit equivalent if their orbit equivalence relations EXΓ and E

Y
∆

are isomorphic.

Orbit equivalence has become an important meeting point of ergodic
theory, Borel equivalence relations, and von Neumann algebras.



Amenable groups I

¿eorem (Dye, 1963)
All ergodic actions of Z are orbit equivalent.

An equivalence relation generated by a Z action is called hyper�nite.

¿eorem (Ornstein–Weiss, 1980)
If Γ↷ X is measure-preserving and Γ is amenable, then EXΓ is
hyper�nite a.e.

Corollary
All ergodic actions of amenable groups are orbit equivalent.



Amenable groups II

De�nition
A countable group Γ is called amenable if there exists a �nitely
additive, le -invariant probability measure on Γ.

Examples: Z, solvable groups, groups with polynomial growth, etc.
¿e class of amenable groups is closed under taking subgroups and
factors.

Let U be a non-principal ultra�lter on N; de�ne a �nitely additive,
invariant probability measurem on Z by:

m(A) = lim
n→U

∣A∩ [−n,n]∣
2n + 1

.

Non-examples: non-abelian free groups.
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Non-orbit equivalent actions of non-amenable
groups

Every non-amenable group without property (T) has at least two
non-orbit equivalent ergodic actions (Schmidt, Connes–Weiss).

. . . (1981–2003) . . .

Continuum many non-orbit equivalent, ergodic actions for:
property (T) groups (Hjorth);
non-abelian free groups (using relative property (T) of the pair
(SL(2,Z) ⋉ Z2,Z2)) (Gaboriau–Popa);
groups containing F2 (Ioana);
all non-amenable groups (Epstein).

Orbit equivalence of ergodic actions of F2 is:
not smooth (one cannot use reals as invariants of OE)
(Törnquist);
not classi�able by countable structures (Kechris, Törnquist).
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Non-classifiability by countable structures

Let L = ⟨R1,R2, . . . , f1, f2, . . .⟩ be a countable language. ¿en one can
consider the Polish space of all countable (in�nite) L-structures XL.
For example, if L = ⟨R, f⟩, where R has arity l and f has arity k, every
countable L-structure with universe N can be viewed as an element of
2N

l ×NNk
.

Countable structures can be used for classi�cation as follows:

De�nition
We say that an equivalence relation E on a standard Borel space X can
be classi�ed by countable structures if there exists a language L and a
Borel map f∶X→ XL such that

x E y ⇐⇒ f(x) ≅ f(y).

¿emain tool for proving non-classi�ability by countable structures is
Hjorth’s theory of turbulence.
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Epstein’s co-inducing construction

Given ∆ ≤ Γ and an action ∆↷ (Y,ν), one can de�ne an action

Γ↷ {f∶ Γ→ Y ∶ f is ∆-equivariant} ≅ YΓ/∆ by

(γ ⋅ f)(γ′) = f(γ−1γ′).

Ioana used this construction together with the techniques of
Gaboriau and Popa to obtain his result about non-orbit
equivalent actions of groups containing F2.

If instead one is given two actions Γ↷ (X, µ) and ∆↷ (X, µ)
such that EX∆ ⊆ EXΓ , one can de�ne from an action ∆↷ (Y,ν)
another action

Γ↷ {(x, f) ∶ f∶ [x]Γ → Y, f is ∆-equivariant} ≅ X × Y[E∶F].

Gaboriau and Lyons proved (using percolation) that for any
non-amenable group Γ, the Bernoulli shi Γ↷ [0, 1]Γ admits a
subequivalence relation generated by a free, ergodic action of F2.
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Positive definite functions

In order to apply the co-inducing construction, it is useful to have
more speci�c information about the relative position of EX∆ and E

X
Γ .

De�nition
Let Γ be a countable group. A function ϕ∶ Γ→ C is called positive
de�nite if for any γ1, . . . ,γn ∈ Γ and c1, . . . , cn ∈ C,

∑
i,j
ϕ(γ−1i γj)cicj ≥ 0.

Let F ⊆ E be equivalence relations on (X, µ) and E be generated by an
action of Γ. ¿en the function

τF(γ) = µ({x ∶ γ ⋅ x F x})

is positive de�nite.

¿e function τF can be used to measure how big F is inside E.
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Generating mixing actions

De�nition
An action Γ↷ (X, µ) is calledmixing if for any two measurable sets
A,B ⊆ X,

lim
γ→∞

µ(γ ⋅ A∩ B) = µ(A)µ(B).

Easily from the de�nition, all mixing actions are ergodic.

Γ,∆↷ (X, µ) are �xed; EX∆ ⊆ EXΓ . Write F = EX∆ .

Proposition
If Γ↷ (X, µ) is mixing and τF(γ)→ 0 as γ→∞, then for any action
∆↷ (Y,ν), the co-induced action Γ↷ X × Y[E∶F] is mixing.



Existence of small subequivalence relations

¿eorem
Let Γ be a countable group and Γ↷ (X, µ) a mixing action. ¿en
there exists an ergodic, hyper�nite subequivalence relation F ⊆ EXΓ
such that τF(γ)→ 0 as γ→∞.

¿is theorem, together with Epstein’s construction and the previous
proposition, provides many new mixing actions of arbitrary groups.

¿eorem (with I. Epstein)
Let Γ be non-amenable. ¿en there exists a free, measure-preserving,
mixing action Γ↷ (X, µ) and a measure-preserving, ergodic action
F2 ↷ (X, µ) such that EXF2 ⊆ E

X
Γ and τEX

F2
(γ)→ 0 as γ→∞.

¿eorem (with I. Epstein)
Let Γ be a countable, non-amenable group. ¿en orbit equivalence of
free, mixing actions of Γ is not classi�able by countable structures.
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Property (T) groups

De�nition
A group Γ has property (T) if there exist a �nite set Q ⊆ Γ and є > 0
such that every unitary representation of Γ that has a (Q,є)-almost
invariant unit vector actually has a �xed point. More precisely, for
every unitary representation π on a Hilbert spaceH, if there exists a
unit vector ξ ∈H for which ∥π(γ)(ξ) − ξ∥ < є for all γ ∈ Q, then there
is 0 ≠ ξ0 ∈H such that π(γ)(ξ0) = ξ0 for all γ ∈ Γ. (Q,є) is called a
Kazhdan pair for Γ.

Examples: SL(n,Z) for n ≥ 3;
Property (T) is incompatible with amenability: every amenable
group with property (T) is �nite.
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Closeness of subequivalence relations

¿eorem
Let Γ↷ (X, µ) be measure-preserving and let F ⊆ EXΓ be a
subequivalence relation. If

inf
γ∈Γ

τF(γ) = τ0 > 0,

then there exists an F-invariant set Aof positive measure such that

[EXΓ ∣A ∶ F∣A] ≤
1
τ0
.

In particular, if F is ergodic, it has �nite index in EXΓ .

Example (Property (T) groups)
Let Γ have property (T) and (Q,є) be a Kazhdan pair for Γ. If for all
γ ∈ Q, τF(γ) > 1 − є2/2, then the conclusion of the theorem holds.
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Percolation

Let Γ be a �nitely generated group with a �nite, symmetric generating
set S. Let G be the (right) Cayley graph of Γ (the vertices of the graph
are the elements of Γ and we connect γ and γ′ with an edge if γs = γ′
for some s ∈ S). Let E be the set of edges of G.

De�nition
A percolation on the graph G is a Γ-invariant measure P on 2E.
Bernoulli p-percolation is the percolation given by the product
(p, 1 − p)measure.

Percolation theory, especially on Zd but, more recently, also on
arbitrary Cayley graphs, is a well developed branch of probability
theory.
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Basic facts about Bernoulli percolation

¿emain question in percolation theory is about the existence of
in�nite clusters (connected components) of the (random) percolation
graph. It is easy to see that the number of in�nite clusters in Bernoulli
percolation is deterministic (constant a.s.).

Basic facts:
¿e number of in�nite clusters is always 0, 1, or∞.
¿ere exist constants pc and pu such that 0 < pc ≤ pu ≤ 1 and the
following hold:

if p ∈ [0, pc), there are no in�nite clusters;
if p ∈ (pc, pu), there are in�nitely many in�nite clusters;
if p ∈ (pu, 1], there is a unique in�nite cluster.

If Γ is amenable, then pc = pu (Burton and Keane).
Conjecture (Benjamini–Schramm): If Γ is non-amenable, then
pc < pu.



Basic facts about Bernoulli percolation

¿emain question in percolation theory is about the existence of
in�nite clusters (connected components) of the (random) percolation
graph. It is easy to see that the number of in�nite clusters in Bernoulli
percolation is deterministic (constant a.s.).

Basic facts:
¿e number of in�nite clusters is always 0, 1, or∞.
¿ere exist constants pc and pu such that 0 < pc ≤ pu ≤ 1 and the
following hold:

if p ∈ [0, pc), there are no in�nite clusters;
if p ∈ (pc, pu), there are in�nitely many in�nite clusters;
if p ∈ (pu, 1], there is a unique in�nite cluster.

If Γ is amenable, then pc = pu (Burton and Keane).
Conjecture (Benjamini–Schramm): If Γ is non-amenable, then
pc < pu.



Percolation as a source of subequivalence
relations

Consider the natural action Γ↷ 2E by shi . Let E be the orbit
equivalence relation. One can de�ne the cluster subequivalence
relation Ec ⊆ E as follows:

ω1 Ec ω2 ⇐⇒ ∃γ ∈ Γ γ⋅ω1 = ω2 and 1 and γ are in the same ω1-cluster.

In this way, every E-equivalence class gets the structure of a subgraph
of the Cayley graph G and the equivalence classes of Ec are just the
connected components of this subgraph.

Notice that in this case, the function τEc has a very simple
interpretation, namely:

τEc(γ) = P(1 and γ are in the same cluster).

In particular, if γ ∈ S, then

τEc(γ) ≥ p.
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An application to percolation on property (T)
groups

Conjecture (Benjamini–Schramm)
Let G be a Cayley graph of Γ. ¿en pu < 1 i� Γ has one end (G ∖ Ahas
only one in�nite connected component for all �nite A).

¿eorem (Lyons–Schramm)
If Γ has property (T), then pu < 1.

¿eorem
Let Γ have property (T) with Kazhdan pair (Q,є). ¿en
pu(GQ) ≤ 1 − є2/2.
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