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Introduction

I The aim is to discuss various relationships between definable
sets and compact (always Hausdorff) spaces in first order
logic, touching on current research in model theory. The
lectures are directed towards the general logic audience,
including (descriptive) set theorists and those in “algebraic
logic”, but should be of interest to model-theorists too. But I
will say less than promised in the abstract.

I Prerequisites: familiarity with basics of first order logic and
model theory such as formula, structure, complete theory,
compactness theorem, Lowenheim-Skolem theorem, saturated
models, as well as basic topology.

I What is called algebraic logic is, I believe, about those
algebraic and topological structures intrinsically associated to
logic or logics (but correct me if I am wrong). These lectures
are in a sense about algebraic logic, but within and at the
boundaries of the first order framework.



Type spaces I

I Let T be a complete first order theory in language L, say
1-sorted for simplicity and without finite models. What
(locally) compact spaces, groups,.., can be intrinsically
attached to T (as invariants of T ), and in what sense can
they be viewed as definable sets?

I A bad answer: Let T = RCF = Th(R,+, ·, <). Then R is
the unique locally compact model (with topology induced by
the ordering). But in what sense can this model, and its
topology, be recovered from T , or characterized purely
model-theoretically? It is not prime, or saturated... In fact
there is a positive answer and we will come back to it.

I Of course there are some compact spaces intrinsically
attached to T . Namely the type spaces.



Type spaces II

I For each n let Fn(T ) be the Lindenbaum algebra of T ,
namely the Boolean algebra of L-formulas φ(x1, .., xn) (in
free variables x1, .., xn)), up to equivalence moduli T .

I The space Sn(T ) is the Stone space of Fn(T ), namely the set
of ultrafilters on Fn(T ), or complete n-types of T . The basic
open sets of Sn(T ) are of the form {p(x̄) : φ(x̄) ∈ p}, for
φ(x̄) a formula. As such Sn(T ) is totally disconnected, and
possibly not so interesting from the point of view of geometry.

I The theory T can actually be presented as a “type-space
functor”, namely the functor which takes a natural number n
to Sn(T ). (What are the morphisms?)

I Beware: S2(T ) is NOT S1(T )× S1(T ), even as a set. It is
because of this that model theory is not reduced to topology.

I This is the same phenomenon as with the Zariski topology on
an algebraic variety X. The Zariski topology on X ×X is not
the product of the Zariski topology on X with itself.



Type spaces III

I Likewise, if M |= T and A ⊆ M , we have Sn(Th((M,a)a∈A)
which we often write as Sn(A) and call the set of complete
n-types over A. (But remember this depends on
Th((M,a)a∈A).)

I So Sn(A) is the Stone space of the natural Boolean algebra
Fn(A).

I If M |= T and A ⊆ M and b ∈ Mn, we have
tp(b/A) ∈ Sn(A). Moreover for any p ∈ Sn(A) there is an
elementary extension of M in which p is “realized”.



Category of definable sets I

I Naively, a definable set is φ(M) = {a ∈ Mn : M |= φ(a)}, for
some model M of T , and formula φ(x1, .., xn) of L.

I It is more reasonable to define a definable set as a functor Fφ

from Mod(T ) (with elementary embeddings as morphisms) to
Sets determined by some formula φ(x1, .., xn): namely
Fφ(M) = φ(M).

I As such the set of definable sets (of n-tuples) identifies with
Fn(T ).

I Sometimes we write a definable set as X or Xφ and talk
about X(M) for a model M .

I Likewise we can speak of sets definable with parameters, or
A-definable sets, or sets defined over A.



Category of definable sets II

I Can a definable set be viewed naturally as a compact space?

I Well consider the formula 0 ≤ x ≤ 1 in RCF , then in the
model R it defines the unit interval [0, 1](R) (a compact
space). But this does not count, as remarked earlier.

I If φ(M) is finite for some M |= T then φ(M) has the same
finite size for all M , and the functor Fφ has constant value a
fixed finite set, which of course IS a compact space (with
discrete topology).

I But once φ(M) is infinite for some model M then by the
compactness theorem, |φ(N)| is unbounded, as N varies, and
there is no sense in which the formula, definable set, or
functor can be viewed as a compact object.

I Similarly for “type-definable” or “∧-definable” sets. A
type-definable set is given by a collection Φ(x1, .., xn) of
formulas, where for a model M ,
Φ(M) = {a ∈ Mn : M |= φ(x̄) for all φ ∈ Φ}.



Category of definable sets III

I Then if Φ(M) is infinite for some model M then by
compactness |Φ(N)| is unbounded as N varies over models of
T .

I And if Φ(M) is finite in all models M of T then Φ is
equivalent to a single formula φ with Fφ constant valued.

I We can slightly enlarge our notion of definability by
considering quotients by definable equivalence relations. That
is let X be a definable set (even type-definable set), and E a
definable equivalence relation on X (meaning what?). Then
(X/E)(M) =def X(M)/E(M) for any model M .

I Then EITHER |(X/E)(M)| is unbounded as M varies, OR
(X/E)(M) has constant value which is a finite set.

I So far the only definable sets which have a chance of being
considered compact sets are the finite ones. But a slight twist
will produce something new.



Hyperdefinable sets I

I Let X be a definable (or even type-definable) set and let now
E be a type-definable equivalence relation on X (meaning
what??). (Where X, E could be defined with parameters from
some model.)

I For any model M over which X, E are defined, define
(X/E)(M) to be X(M)/E(M). We call (the functor) X/E
a hyperdefinable set.

Example 1.1

The type space Sn(T ) “is” a hyperdefinable set (defined with no
parameters).

Proof.



Hyperdefinable sets II

I Consider the case n = 1. Let E(x, y) be the type-definable
equivalence relation given by {φ(x) ↔ φ(y) : φ(x) ∈ L}, and
X be defined by x = x. Then as long as all 1-types are
realized in M we have a tautological bijection between S1(T )
and (X/E)(M).

I So in fact X/E is eventually constant, that is if N is an
elementary extension of M and all 1-types are realized in M
then (X/E)(M) = (X/E)(N).

I We can even recover (tautologically) the topology on S1(T ):
A subset C of X/E is closed if there is a partial type Σ(x)
without parameters such that π−1(C)(M) = Σ(M) for any
model M . More on this to be said later.



Hyperdefinable sets III

Definition 1.2
Let X/E be a hyperdefinable set. Call X/E bounded if it is
eventually constant. Namely there is a model M0 (over which
X, E are defined) such that whenever M0 ≺ M then
(X/E)(M) = (X/E)(M0). Equivalently, for M̄ a sufficiently
saturated model, |(X/E)(M̄)| < |M̄ |.

I Some remarks.

I So through Example 1.1 we have examples of bounded
hyperdefinable sets which do not reduce to finite sets, even
though there X/E is “profinite”.

I Definition 1.1 seems very semantic but in fact the notion of
“bounded hyperdefinable set” can be obtained purely
syntactically, working with Th(M0,m)m∈M0 where M0 is a
model over which the data are defined.



Hyperdefinable sets IV

I It is convenient at this point to replace the category Mod(T )
by a fixed very saturated model M̄ of T (whose existence may
depend on set theory). So for some inaccessible cardinal
κ̄ > |T |, M̄ is κ̄ saturated and of cardinality κ̄.

I M̄ is a kind of “proper class” or universe. “Small” or
“bounded” means of cardinality < κ. M,N, .. denote small
elementary substructures of M̄ , and A,B, .. small subsets of
M̄ . Partial types Φ(x̄) are meant to be over small sets of
parameters.

I Identify a definable, or type-definable, or hyperdefinable, set
X with X(M̄).

I Then it is a fact/theorem that a hyperdefinable set X is
bounded just if X(M̄) is bounded, i.e. of cardinality < κ̄.

I This may offend certain sensibilities, but again everything I
say will have an equivalent syntactic presentation.



Hyperdefinable sets V

Theorem 1.3
Let X/E be a bounded hyperdefinable set, with X, E defined over
a model M0. Let π : X → X/E be the canonical projection.
Define C ⊆ X/E to be closed if
(*) π−1(C) ⊆ X is type-definable (with parameters).
Then
(i) this equips X/E with a compact (Hausdorff) topology, which
we call the logic topology. Moreover the topology is the same if in
(*) we only require type-definability with parameters from M0.
(ii) In particular, for b ∈ X (= X(M̄)), π(b) depends only on
tp(b/M0). Hence π : X → X/E factors through the relevant type
space Sn(M0), and in fact X/E with its logic topology, is a
quotient of the space Sn(M0).

Proof.
Exercise, using the compactness theorem



Standard part maps I

I So we have seen that bounded hyperdefinable sets are, as
compact spaces, continuous images of type spaces.

I Are there interesting, in particular non totally disconnected,
spaces arising this way?

I We return to the example RCF mentioned at the beginnibg
of the talk.

I So take T to be RCF and I the definable set 0 ≤ x ≤ 1
(defined without parameters). That is I is the interpretation
of this formula in the model M̄ (a saturated real closed field
containing R as an elementary substructure).

I I(R) is the standard unit interval, so I can be viewed as the
“nonstandard” I(R).

I From nonstandard analysis we have the usual standard part
map π : I → I(R).



Standard part maps II

I So for x, y ∈ I, π(x) = π(y) iff |x− y| < 1/n for each
positive natural number n. (Where |x− y| means in the sense
of the real closed field M̄).

I Thus the equivalence relation π(x) = π(y) is type-definable
with no parameters, and we call it E. So I/E is a bounded
hyperdefinable set which identifies set-theoretically with I(R).

Theorem 2.1
The logic topology on I/E coincides with the usual (Euclidean, or
order) topology on I(R).

Proof.
Exercise. But note there is something interesting going on here as
there is no explicit mention of < in the definition of the logic
topology. Note also that E is NOT a conjunction of definable
equivalence relations.



Standard part maps III

I Is there something canonical about the type-definable
equivalence relation E (being infinitesimally close)?

I Well, after identifying 0 and 1, addition modulo 1 equips I
with a group structure, and E is essentially the finest bounded
type-definable (even with parameters) equivalence relation
which is invariant under the group law.

I So E is something canonical, and by Theorem 1.4 we have
recovered from the theory RCF the real unit interval as a
compact topological space, without ever imposing from
outside any topologies, and also giving a good answer to our
question at the beginning.



Domination I

I We have Lebesgue measure on I(R), which coincides with
Haar measure on the real Lie group S1 (after identifying 0 and
1). Call it h. It is not hard, using o-minimality of RCF to see
that h has a unique extension to a finitely additive probability
measure on the definable subsets of I in M̄ (i.e. to a so-called
global Keisler measure on I).

I Namely every definable subset of I in M̄ is a finite union of
intervals and points, and we are forced to assign 0 to
“infinitesimal” intervals.

I We will extend this to the n-dimensional unit cube In.



Domination II

Lemma 2.2
Let π : In → In(R) be the standard part map. Let X ⊆ In be
definable (with parameters). Let C ⊆ In(R) be the set of those c
such that the fibre π−1(c) intersects both X and the complement
of X. THEN C has Haar measure 0.

I Lemma 2.2 says that the definable set In is dominated by the
compact set (In(R), h) equipped with its measure h, via the
map π.

I This is essentially a special case of results on standard part
maps proved a few years ago by Berarducci and Otero.



Domination III

Proof.

I The first ingredient is “definability of types over R”.

I What this says is that if X ⊆ M̄n is definable with
parameters. Then X ∩ Rn is definable (with parameters from
R of course) in the structure (R,+, ·, <).

I By the way, R is the unique model of RCF with the property
that all types over it are definable. So this property recovers
R from RCF at least as a structure (rather than topological
space).

I The first step is to prove that the set C in the statement of
Lemma 2.2 is definable in the structure R.

I Let’s do this. Let Z = {(b, ε) ∈ M̄n+1 : b ∈ In, ε > 0 and the
ε ball around b contains points in X and points in Xc}.

I So Z is definable in M̄ over the same parameters used to
define X.



Domination IV

I By the definability of types fact mentioned above,
W = Z ∩ Rn is definable (with parameters) in the structure
(R,+, ·, <).

I Then one can check that C = {b ∈ In(R): for all ε > 0 in R,
(b, ε) ∈ W}, clearly definable in R.

I In general (measurable) subsets of In(R) with positive
measure need not have interior. But for sets definable in
(R,+, ·, <) they must (via o-minimal dimension etc.).

I So assuming, for a contradiction, that h(C) > 0, C must have
interior in Rn, hence contains a definable (in R) open set U .

I Now consider U(M̄), namely the interpretation of the formula
defining U in the big model. This is an open subset of In

defined over R.

I From o-minimality we can deduce quite easily that either
X ∩ U(M̄) or Xc ∩ U(M̄) contains an open R-definable set.



Domination V

I This is a contradiction (why?) and the lemma is proved.

I The same proof works with RCF replaced by Th(Qp,+, ·)
and I replaced by the valuation ring (as the two main
ingredients, definability of types over the “standard” model,
and cell decomposition for definable sets, remain valid here).

Corollary 2.3

Lebesgue measure on In(R) lifts to a unique (global) Keisler
measure on In.



Domination VI

I A Keisler measure (over A) on a definable set X is a finitely
additive probability measure on the definable (over A) subsets
of X.

I Lemma 2.2 and Corollary 2.3 extend easily to compact Lie
groups definable in R equipped with their Haar measure.

I Results by Koiran and Karpinski-Macintyre on the
“approximate definability of Lebesgue measure” on the real
n-dimensional unit cube, in the structure (R,+, ·, <), follow
quickly from Corollary 2.3.



G00 I

I We point out a recent rather serious generalization of the
“domination” results of the last section.

I One works now with an arbitrary o-minimal expansion T of
RCF . (In fact given other recent results we are close to being
able to work with an arbitrary o-minimal theory.)

I Again M̄ is a saturated model. We take G to be a “definably
compact” definable group, where definably compact can be
thought of as living as a closed and bounded definable set in
some M̄n.

I So In (considered as a group) is replaced by G.

I The new situation differs from RCF in at least two ways.

I First, T may no longer have a model whose underlying
ordered set (or field) is R. So there is no extrinsic standard
part map entering the picture.



G00 II

I Secondly, even if there were, G may no longer be defined over
R, or even “descend” to R (that is be definably isomorphic to
a group defined over R).

I Example: G = A(M̄), A abelian variety over M̄ with trivial
R-trace.

Theorem 2.4
Let G be a definably compact, definably connected, definable
group in M̄ |= T . (T o-minimal as above.) Then G has a unique
smallest type-definable subgroup of bounded index G00. Equipped
with the logic topology, G/G00 is a compact Lie group with
dimension equal to the o-minimal dimension of G. Moreover G is
dominated by (G/G00, h) under the canonical π : G → G/G00,
where h is Haar measure on G/G00.



G00 III

I I will discuss some of the words and notions in the statement
of Theorem 2.4.

I For T an arbitrary theory, G a definable group and A a
(small) set of parameters over which G is defined, let G0

A be
the intersection (conjunction) of all A-definable subgroups of
G of finite index, and let G00

A be the smallest type-definable
over A subgroup of G of bounded index.

I Then G00
A ⊆ G0

A.

I If G0
A does not depend on the choice of A, we call it G0, the

definably connected component of G. Likewise for G00 which
we may call the type-definably connected component of G.

I Under the logic topology, G/G00 is a compact topological
group, and G/G0 is its maximal profinite quotient.

I If T is ω-stable (countably many types over any countable
model), then G0 = G00 and is definable with finite index.



G00 IV

I If T is stable (at most λω many types over any model of size
λ) then G0 = G00 also, but G00 may be an infinite
intersection of definable subgroups of finite index.

I For T without the independence property, G00 exists but may
be strictly smaller than G0.

I For example if T is o-minimal, then G0 is definable of finite
index (G is definably connected by finite). So as we have seen
G00 may not equal G0.

I A Lie group is a real analytic manifold with real analytic group
structure. When we say G is a compact Lie group we mean it
is the underlying topological group of a compact Lie group.

I Arbitrary compact groups are obtained from finite (discrete)
groups and connected compact Lie groups by taking inverse
(or projective) limits.



G00 V

Proof.
(of Theorem 2.4)

I The first part (G and G/G00 have same dimension) was the
topic of Peterzil’s tutorial last year.

I The moreover part is more recent.

I The crucial case is where G is commutative.

I I will not attempt even to outline the proof, but this proof
yields a rather attractive picture: in the Shelah expansion M̄∗

of M̄ obtained by adding predicates for externally definable
sets, G/G00 is actually definable (interpretable) and
“semi-o-minimal”, and moreover the topological structure it
obtains this way agrees with the logic topology.



G00 VI

I A corollary of Theorem 2.4 is that G has a unique left
invariant global Keisler measure (which is also its unique right
invariant measure).

I In fact what I have been describing is in a sense the tip of an
iceberg. In the background is an appropriate generalization of
stable group theory to definable groups in theories without the
independence property, and also the generalization of the
machinery of forking to such theories.

I For example the uniqueness of measure statement above is
the generalization of uniqueness of invariant types for
connected stable groups.



KP -types and the compact Lascar group I

I The material here, although fitting in to the general scheme
of the lectures, is rather old, but gives me the chance to
restate a conjecture on the descriptive set-theoretic nature of
a certain quotient object.

I We fix again a complete first order theory T (1-sorted), which
at some point we will assume to be countable, namely in a
countable language L.

I I discuss now some equivalence relations and groups
intrinsically associated to T .

I Again I will work semantically (via definability) but everything
has an equivalent syntactic presentation.

I Fix n and consider equivalence relations E on n-tuples from
M̄ which are type-definable without parameters, and bounded
(< |M̄ |, or equivalently at most 2|T | classes).



KP -types and the compact Lascar group II

I So for T = RCF and n = 1 the relation, discussed in the
previous lecture, of being infinitesimally close for x, y in I and
equal otherwise, is such an equivalence relation. For an
arbitrary theory T the relation of having the same type over ∅
is another.

I In any case, there is clearly a finest such equivalence relation,
which we call En

KP . The bounded hyperdefinable (without
parameters) set M̄n/En

KP is sometimes called the set of
KP -strong types of n-tuples.

I Aut(M̄) acts on this (compact) space, for each n. The group
of KP -strong automorphisms of M̄ consists by definition of
those automorphisms which fix pointwise each space, and the
quotient of Aut(M̄) by the group of KP -strong
automorphisms, is called the KP -group or compact Lascar
group of T . It is naturally a compact topological group, and is
a basic invariant of the theory T (and is ∗-hyperdefinable).



KP -types and the compact Lascar group III

I In cases such as RCF (or more generally when some model of
T has all elements pointwise definable), then En

KP coincides
with having the same type over ∅, for all n. In this case
clearly Aut(M̄) acts trivially on the space of KP -strong types
so the KP -group is trivial, and in fact the whole of the
current section is vacuous.

I On the other hand if T = ACF0 = Th(C,+, ·), then the
union of the spaces of KP -strong types, for n varying,
identifies with Qalg the field of algebraic numbers, and the
KP -group of T coincides with Gal(Qalg/Q), the absolute
Galois group of Q. (This uses “elimination of
hyperimaginaries and imaginaries” in ACF0.)



KP -types and the compact Lascar group IV

Example 3.1

Let M be the unit circle, equipped with the circular ordering
S(x, y, z) as well as binary predicates Rn(x, y) for each n, which
hold if d(x, y) ≤ 1/n (suitably normalized). Let T = Th(M).
Then E1

KP = {Rn(x, y) : n = 1, 2, ...} and the space of
KP -strong 1-types is homeomorphic to S1.



Lascar strong types and the Lascar group I

I There is another equivalence relation which at first sight
belongs to infinitary logic, but is in fact quite central to the
first order context.

Definition 3.2
(i) Fix n. Then En

L (which will be an equivalence relation on
n-tuples from M̄) is the transitive closure of the relation: x, y are
the first two members of an infinite indiscernible sequence.
(ii) The group Autf(M̄) of Lascar strong automorphisms of M̄ , is
the subgroup of Aut(M̄) generated by {Aut(M̄/M) : M a small
elementary substructure of M̄}.



Lascar strong types and the Lascar group II

Lemma 3.3
En

L has the following alternative characterizations:
(i) It is the finest bounded equivalence relation on n-tuples from
M̄ which is Aut(M̄)invariant.
(ii) It is the orbit equivalence relation under the action of
Autf(M̄) on M̄n.

I In connection with (ii) important technical observations are
(I): if a, b begin an infinite indiscernible sequence then for
some model M , tp(a/M) = tp(b/M), and (II): if
tp(a/M) = tp(b/M) then for some c, both (a, c), and (b, c)
begin infinite indiscernible sequences.

I EL refines EKP .

I It was open for some time whether EL always equals EKP .

I Ziegler found a counterexample around ten years ago, which
appeared in a joint paper with Casanovas, Lascar and myself:
Galois groups of first order theories, JML, 2001.



Lascar strong types and the Lascar group III

I The group Aut(M̄)/Autf(M̄) which acts on the “space” of
Lascar strong types, i.e. on the M̄n/En

L, for all n, is called
the Lascar group of T , another basic invariant.

I The KP -group is a quotient of the Lascar group, but the
kernel is a rather mysterious object, which we believe could or
should be understood descriptive set-theoretically.

I It is conceptually easier to study the equivalence relations
EKP , EL directly.

I So the issue is the structure of the set of EL-classes in a given
EKP -class.



Borel equivalence relations I

I Let us now assume T to be countable.

I We fix an E1
KP -class which we call X, and want to

understand X/EL.

I So far this just concerns pointsets. Namely X is a subset of
M̄ and EL|X a certain equivalence relation on X.

I Note that X is type-definable over any element a of X as
EKP (x, a).

I But what kind of mathematical object is X/EL? Our “thesis”
is that it belongs to descriptive set theory.

I Newelski proved some time ago that the cardinality of X/EL

is either 1 or 2ω.

I Let M0 be a countable model which contains an element a0

of X.

I Let C be the set of tp(a/M0) for a ∈ X.



Borel equivalence relations II

I So C is a closed subset of S1(M0) (defined by EKP (x, a0)).
I Note that C is a (compact) Polish space (as a closed

subspace of the compact separable metrizable space S1(M0)).
I We remarked earlier that if tp(a/M0) = tp(b/M0) then

EL(a, b).
I Hence the projection π : X → X/EL factors through C, so

can be written as C/E for some equivalence relation E on the
Polish space C.

I E is Borel, in fact Kσ (a countable union of compacts).

I Why? Because, for p, q ∈ C, E(p, q) if there are realizations a
of p and b of q such that EL(a, b). (Check...)

I There is a reasonably developed theory of the complexity of
Borel equivalence relations on Polish spaces (Discuss?).



Borel equivalence relations III

I The conjecture, which strengthens Newelski’s result
mentioned above is:

I EITHER C/E (i.e. X/EL) is not concretely classifiable OR it
is trivial (i.e. one point).

I Concrete classifiability would mean that there is a Borel map
f : C → D from C to another Polish space which realizes (or
eliminates) E, namely f(p) = f(q) iff E(p, q).

I Among non concretely classifiable Kσ relations on Polish
spaces, there is a “weakest” one E0 and a “strongest” one
EKσ (where the latter was found rather recently).

I The original Ziegler example has complexity EKσ . With
Slawek Solecki we modified this to give an example (i.e. of a
theory T and EKP -class X) such that the Borel complexity of
X/EL is E0.



References

I Proper references will be given if and when these notes are
presented more formally.

I But in the meantime I should mention some names (in
addition to myself) of the many mathematicians associated
with the work and results discussed in these lectures.
Apologies for any inadvertent omissions.

I Section 1: Folklore, Lascar...

I Section 2: Berarducci, Edmundo, Hrushovski, Onshuus,
Otero, Peterzil.

I Section 3: Casanovas, Lascar, Newelski, Solecki, Ziegler.

I I am not sure about the references for the theory of Borel
equivalence relations and recent results on Kσ equivalence
relations.
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