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Introduction Formalising Truth

Formalising Truth

Definition (Language of truth)

We work in L1 the language of Peano Arithmetic augmented with an
additional predicate symbol T. Let PA+ denote PA formulated in the

language L.
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Introduction Formalising Truth

Formalising Truth

Definition (Language of truth)

We work in L1 the language of Peano Arithmetic augmented with an
additional predicate symbol T. Let PA+ denote PA formulated in the
language L.

The intuition is that 7 (x) denotes that x is (the Godel number of) a
“true” L1 sentence.
Let 7.7 provide a Godel numbering of L.
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Introduction Formalising Truth

Choices for truth

Of course, by Tarski's Theorem the “ideal” axiom of truth, T" A" < A for
all sentences A, is inconsistent with PA+. However, there are ways in
which we can overcome this inconsistency.
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Choices for truth

Of course, by Tarski's Theorem the “ideal” axiom of truth, T" A" < A for
all sentences A, is inconsistent with PA+. However, there are ways in
which we can overcome this inconsistency.

@ Restrict the language so as to stop self-reference. For example allow
TTA7 « A for ACPA-
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all sentences A, is inconsistent with PA+. However, there are ways in
which we can overcome this inconsistency.

@ Restrict the language so as to stop self-reference. For example allow
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@ Replace TT AT «— A with weaker, consistent, axioms.
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Introduction Formalising Truth

Choices for truth

Of course, by Tarski's Theorem the “ideal” axiom of truth, T" A" < A for
all sentences A, is inconsistent with PA+. However, there are ways in
which we can overcome this inconsistency.

@ Restrict the language so as to stop self-reference. For example allow
TTA7 « A for ACPA-

@ Replace TT AT «— A with weaker, consistent, axioms.
We will consider case 2.
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Introduction A Base for truth

A Base for truth

Let Baser be the theory comprising of PA+ and the following axioms.
QO (TTA—-B'ATTAY) - T"B™.
@ T(ucl”B") for all tautologies B.
© TTA"if Alis a true primitive recursive atomic sentence.

where ucl(A) denotes the (Godel number of the) universal closure of A.
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Introduction Axioms for truth.

Axioms of truth

Possible axioms, schema, and rules of inference we consider are
A— TrAT, —(TTATA TT=AD), A/TTAT,
TTAT — A, TFATYV TT-AT, TTAT/A,
TTAT = TTTTAT, VYnTMAR — TTVxAx?, —A/=~TFA7,
TTTTAT - TTAY, TraxAx'—3dnTTAn?, —TrA7/-A.
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Introduction Axioms for truth.

Axioms of truth

Possible axioms, schema, and rules of inference we consider are
A— TrAT, —(TTATA TT=AD), A/TTAT,
TTAT — A, TFATYV TT-AT, TTAT/A,
TTAT = TTTTAT, VYnTMAR — TTVxAx?, —A/=~TFA7,
TTTTAT - TTAY, TraxAx'—3dnTTAn?, —TrA7/-A.

These axioms were considered by Harvey Freidman and Michael Sheard in
An axiomatic approach to self-referential truth [2].

They classified the above axioms and rules into nine maximally consistent
sets.
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Ordinal Analyses Lower bounds

U-Inf: YVn TTAAT — TTVx Ax?  T-Elim: TTA7/A
T-Del: TTTTAT — TTAT T-Intro: A/TTAT

Definition
Let S; be Baser + U-Inf + T-Elim, and

S, be Baser + U-Inf + T-Del 4+ T-Intro + T-Elim.
Denote by /(«) the formula V"AT T Tl(&, A)™
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Ordinal Analyses Lower bounds

U-Inf: YVn TTAAT — TTVx Ax?  T-Elim: TTA7/A
T-Del: TTTTAT — TTAT T-Intro: A/TTAT

Definition

Let S; be Baser + U-Inf + T-Elim, and

S, be Baser + U-Inf + T-Del + T-Intro + T-Elim.
Denote by /(«) the formula ¥"A™ T Tl(c, A)™.

Sheard proved (in [4]) that S; F Va. I(a) — I(eq). Moreover he showed

|51] = ¢20.
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Let S; be Baser + U-Inf + T-Elim, and

S, be Baser + U-Inf + T-Del + T-Intro + T-Elim.
Denote by /(«) the formula ¥"A™ T Tl(c, A)™.

Sheard proved (in [4]) that S; F Va. I(a) — I(eq). Moreover he showed
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Ordinal Analyses Lower bounds

U-Inf: Vn TT AR — TTVxAx?  T-Elim: TTA7/A
T-Del: TTTFATT— TTA™ T-Intro: A/TTAT
Definition
Let S; be Baser + U-Inf + T-Elim, and

S, be Baser + U-Inf + T-Del 4+ T-Intro + T-Elim.
Denote by /(«) the formula V"AT T Tl(&, A)™

Sheard proved (in [4]) that S; F Va. I(a) — I(eq). Moreover he showed
51| = ¢20.

We have shown S, F Va. I(a) — I(@na) for each n.

Proof. (Sketch).

From I Va. I(a) — I(pna) we get = Proggl(pn'3) (with U-Inf).
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Ordinal Analyses Lower bounds

U-Inf: YVn TTAAT — TTVx Ax?  T-Elim: TTA7/A
T-Del: TTTTAT — TTAT T-Intro: A/TTAT

Definition
Let S; be Baser + U-Inf + T-Elim, and

S, be Baser + U-Inf + T-Del 4+ T-Intro + T-Elim.
Denote by /(«) the formula V"AT T Tl(&, A)™

Sheard proved (in [4]) that S; F Va. I(a) — I(eq). Moreover he showed
51| = ¢20.

We have shown S, F Va. I(a) — I(@na) for each n.

Proof. (Sketch).

From I Va. I(a) — I(pna) we get = Proggl(pn'3) (with U-Inf). Thus,
FVo. Tlg(a, I(en'8)) — I(en'a).
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Ordinal Analyses Lower bounds

U-Inf: YVn TTAAT — TTVx Ax?  T-Elim: TTA7/A
T-Del: TTTTAT — TTAT T-Intro: A/TTAT

Definition

Let S; be Baser + U-Inf + T-Elim, and

S, be Baser + U-Inf + T-Del + T-Intro + T-Elim.
Denote by /(«) the formula ¥"A™ T Tl(c, A)™.

Sheard proved (in [4]) that S; F Va. I(a) — I(eq). Moreover he showed
|51] = ¢20.
We have shown S, F Va. I(a) — I(@na) for each n.

Proof. (Sketch).

From I Va. I(a) — I(pna) we get = Proggl(pn'3) (with U-Inf). Thus,
FVa. Tlg(a, I(en'3)) — I(¢n'a). Now by T-Intro, axioms of Baser and
T-Del we have - Va. T Tlg(a, I(on' )" — I(pn'a). O
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Ordinal Analyses Infinitary Theories
U-Inf: Yn T AR — TTVx Ax? T-Elim: TTA7/A
T-Del: TTTTAT — TTA™ T-Intro: A/TTA™

It is more interesting to find an upper bound for S,. For this we need to
take a detour into infinitary logic.
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U-Inf: Yn T AR — TTVx Ax? T-Elim: TTA7/A
T-Del: TTTTAT — TTA™ T-Intro: A/TTA™

It is more interesting to find an upper bound for S,. For this we need to
take a detour into infinitary logic.
Definition (Inductive Definition of 55°)
Define S3L==T by (Ax.1), (1), (Vi), (w), (3) and
(Cut). If Fr A, Fr —A and |A| < k then %r

if a, 0 < B.
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Ordinal Analyses Infinitary Theories
U-Inf: Yn T AR — TTVx Ax? T-Elim: TTA7/A
T-Del: TTTTAT — TTA™ T-Intro: A/TTA™

It is more interesting to find an upper bound for S,. For this we need to

take a detour into infinitary logic.
Definition (Inductive Definition of 55°)
Define S3L==T by (Ax.1), (1), (Vi), (w), (3) and
(Cut). If 27T, A, [T, <A and |A| < k then
(Ax.2.). Fr ~T(A), T(A),
(Ax.3.). F I,—=T(A) if Ais not an Lr-sentence,

/87n

k X

if a,8 < B.
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Ordinal Analyses Infinitary Theories
U-Inf: Yn T AR — TTVx Ax? T-Elim: TTA7/A
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It is more interesting to find an upper bound for S,. For this we need to

take a detour into infinitary logic.
Definition (Inductive Definition of 55°)
Define S3L==T by (Ax.1), (1), (Vi), (w), (3) and
(Cut). f n% MA [T, ~Aand [A| < k then [T,
Ax2). F—T,-T(A), T(A
EAX.?).;. E r: ﬁTEA;7 if(A ?s, not an Lr-sentence,
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Graham Leigh (University of Leeds) Axiomatic Theories of Truth LC'08, 8th July 2008

7/15



Ordinal Analyses Infinitary Theories
U-Inf: Yn T AR — TTVx Ax? T-Elim: TTA7/A
T-Del: TTTTAT — TTA™ T-Intro: A/TTA™

It is more interesting to find an upper bound for S,. For this we need to

take a detour into infinitary logic.

Definition (Inductive Definition of 55°)

Define S3L==T by (Ax.1), (1), (Vi), (w), (3) and
(Cut). f n% MA [T, ~Aand [A| < k then [T,
Ax.2.). —TI,=~T(A), T(A

EAX.?).; E r7 ﬁTEA;7 if(A ?s, not an Lr-sentence,

(T-Intro). If F A and n < m then F I, T(A),

)-
)-

(T-Imp). If [=2F, T(4), 2T, T(A - B)) then [2"T,7(B),
(T-Del). If Fr T T(A)" then Fr T(A),

-U-Inf). , m ' tor all m, s X AX),
TUIfIkoTrAWf I kFTVA
if a,0 < f.
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Ordinal Analyses Infinitary Theories

Definition

The rank of A, |A|, is defined as follows.
e |A| =0 if Ais an arithmetical literal or T(s) for some term s.
o [ANB|=|AV B| = |¥xAl = |3x Al = |Al + 1.

Theorem
Cut Elimination

S§°}:—+nl [ implies S;OW r.
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Ordinal Analyses Upper bounds
For each n > 0 and « define
Mp o = <N, {"B™: 550}3“’—”" B for some m < n and ag < a}>

and define My o = (N, D).
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Ordinal Analyses Upper bounds
For each n > 0 and « define
Mp o = <N, {"B™: 550}3“’—”" B for some m < n and ag < a}>

and define My o = (N, D).

Lemma

For each n define f,(a) = ¢n(ypla). Then for every n < w we have
o, n

Q If 0% [ then M, 70 =T
QIf F TT A7 then @ A for some p < n.

@ If {21 then g&r
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Ordinal Analyses Upper bounds
For each n > 0 and « define
Mp o = <N, {"B™: 550}3“’—”" B for some m < n and ag < a}>

and define My o = (N, D).

Lemma

For each n define f,(a) = ¢n(ypla). Then for every n < w we have
o, n

Q If 0% [ then M, 70 =T
QIf F TT A7 then @ A for some p < n.

@ If {21 then g&r

Corollary

If a < w0 then }g—’n TTA™ implies }? A for some 3 < pw0.

Graham Leigh (University of Leeds) Axiomatic Theories of Truth LC'08, 8th July 2008

9/15



Ordinal Analyses Upper bounds

Thus, we have
Lemma

If So = A then Sgo}g—’n A for some o < pwO.

and
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Ordinal Analyses Upper bounds

Thus, we have

Lemma

If So = A then Sgo}g—’n A for some o < pwO.

and

Theorem

Let A be an arithmetical sentence, then S, F A implies
PA + TI(< ¢w0) - A.

Hence

Corollary (T-Elimination for 55°)
52| = ¢w0.
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The theory £

U-Inf: YVn TT AR — TTVx Ax™, T-Elim: TTA7/A,
T-Del: T"TTATT— TTAT, T-Intro: A/TTAT

The bounds for Sy were fairly easy to establish. However, this is not the
case for all nine of the theories we considered.
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The theory £

U-Inf: YVn TT AR — TTVx Ax™, T-Elim: TTA7/A, T-Cons:
T-Del: T"TTFATT — TTAT, T-Intro: A/TTAT  =(TTATATT=AT)

The bounds for Sy were fairly easy to establish. However, this is not the
case for all nine of the theories we considered.

For example, £ is given by
Baset + T-Del + U-Inf + T-Cons + T-Intro + T-Elim.

The upper bound & is not so clear because we no longer have
Cut-Elimination in the corresponding infinitary system. However, we can
embed &£ in a small extension of ID].
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The theory £ ID;‘*’

ID7 is the theory extending PRA in which for each arithmetical formula
Ac [,J,S with only one free variable the language is augmented by an
additional predicate symbol /4 and we have the axioms

Vu. A(u, la) — la(u), (Ax.14.1)

VulA(u, F) — F(u)] — Vu[la(u) — F(u)], (Ax.14.2)
for each formula F containing only positive occurrences of predicates /g

for B € E,*g and induction for formulae where fixed-point predicates occur
positively.
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The theory £ ID;‘*’

ID7 is the theory extending PRA in which for each arithmetical formula
Ac [,J,S with only one free variable the language is augmented by an
additional predicate symbol /4 and we have the axioms

Vu. A(u, la) — la(u), (Ax.14.1)

VulA(u, F) — F(u)] — Vu[la(u) — F(u)], (Ax.14.2)

for each formula F containing only positive occurrences of predicates /g
for B € E,*g and induction for formulae where fixed-point predicates occur
positively.

We define ID“{Jr to be ID] with, as an additional axiom,

VulA(u, F) — F(u)] — Yul[la(u) — F(u)], (Ax.14.3)

if Ae EJ,S is X5 and F is any formula which is 37 or Iy in /4 and =4

Graham Leigh (University of Leeds) Axiomatic Theories of Truth LC'08, 8th July 2008 12 / 15



The theory £ £ and inductive definitions

Theorem

There are formulae An(u, P1) such that £ - C implies there is an n such
that IDIH 1 [,(TC*7).
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The theory £ £ and inductive definitions

Theorem

There are formulae An(u, P1) such that £ - C implies there is an n such
that IDIH 1 [,(TC*7).

Theorem

Every arithmetical consequence of £ is a theorem of ID’{+.
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The theory £ £ and inductive definitions

Theorem

There are formulae An(u, P1) such that £ - C implies there is an n such
that IDIH 1 [,(TC*7).

Theorem

Every arithmetical consequence of £ is a theorem of ID’{+.

Proof.

Let 2 be a model for the first-order part of ID>{+. Using 2 we may then
build a hierarchy of L£y-structures

Mo = (A, 0);
mn+1 == <Ql, In> .

with the property that 9, = /,. Now, if £ F A then 90, |= A for some n.
Hence A = A. But A was arbitrary. O
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The theory £ £ and inductive definitions

And so,

Theorem
pw0 = [ID7] < [€] < [IDT].
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