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Gödel’s axiomatic approach to provability

Gödel (1933) introduced the modal logic S4 as the sys-

tem axiomatizing provability in classical mathematics:

Axioms and rules of classical propositional logic

!(F→G)→(!F→!G) Normality

!F→F Reflexivity

!F→!!F Transitivity

Necessitation Rule:
" F

" !F
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Gödel’s provability semantics for modality

Gödel also considered the interpretation of !F as

F is provable in Peano Arithmetic PA

and noticed that this semantics is inconsistent with S4.

Indeed, !(!F → F) can be derived in S4. On the other hand,

interpreting ! as the predicate Provable of formal provability in
Peano Arithmetic PA and F as falsum ⊥, converts this formula into

the false statement that the consistency of PA is internally provable
in PA:

Provable (Consis PA) .
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Gödel’s paper left open two problems

(1) Find a modal logic of formal provability Provable,

‘a provability semantics without a calculus’

(2) Find a precise provability semantics for S4,

‘a provability calculus without a semantics’

Problem (1) was solved in 1976 by Solovay, who found the logic of

formal provability GL.

Problem (2) was solved in 1995 by Artëmov’s Logic of Proofs LP

which provided a semantics of explicit proofs for S4.
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The provability logic GL is given by the following list

of postulates:

Axioms and rules of classical propositional logic

!(F→G)→(!F→!G) Normality

!(!F→F)→!F Löb Axiom

!F→!!F Transitivity

Necessitation Rule:
" F

" !F
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Formal provability (arithmetical) interpretation of a modal

language is a mapping ∗ from the set of modal formulas

to the set of arithmetical sentences such that ∗ agrees

with Boolean connectives and constants and

(!G)∗ = Provable G∗ .

Solovay’s completeness theorem:

GL " F iff for all interpretations ∗, PA " F ∗.
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As was noticed by Gödel, the formal provability predi-

cate does not model the very notion of mathematical

provability in a satisfactory way. For example, the basic

reflexivity principle of mathematical provability,

if F is provable, then F is true,

which Gödel included in his basic provability logic S4,

fails in the logic of formal provability GL.
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S4-preserving provability interpretation:

(!G)∗ = G∗ ∧ Provable (G∗)

Complete axiomatization:

Grz = S4 + !(!(A→!A)→A)→A

The studies of the logics of strong provability (Kuznetsov, Murav-

itsky, Goldblatt, Boolos, Artemov, Esakia, Yavorskaya, and others)

are helping to connect Provability Logic to Epistemology.
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Alternative Gödel’s format for provability

In his lecture in Vienna in 1938 Gödel mentioned a pos-

sibility of building an explicit version of S4 with basic

propositions ”t is a proof of F”:

Proof (t, F )

This Gödel’s lecture remained unpublished until 1995. By that time

the full Logic of Proofs was already discovered by Artëmov.
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Logic of Proofs LP

Proof polynomials are terms built from proof variables

x, y, z, . . . and proof constants a, b, c, . . . by means of two

binary operations: application ‘·’ and union ‘+’, and one

unary proof checker ‘!’.

Using t to stand for any proof polynomial and S for any

sentence letter, the formulas of the Logic of Proofs

are defined by the grammar

A = S | A→A | A ∧ A | A ∨ A | ¬A | t:A .
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Axioms and rules of the Logic of Proofs LP∅

LP0 Axioms and rules of classical propositional logic

LP1 t:(F →G) → (s:F →(t·s):G) Application

LP2 t:F → !t:(t:F) Proof Checker

LP3 s:F →(s+t):F , t:F →(s+t):F Sum

LP4 t:F →F Reflexivity
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Constant Specification CS is a set of formulas

{c1:A1, c2:A2, c3:A3, . . .}

where each Ai is an axiom and each ci is a proof constant.

LPCS = LP∅ + CS.

LP = LPCS, such that

CS = {c:A | c is any constant, A is any axiom}

Each derivation in LP is a derivation in LPCS for some

finite constant specification CS.
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Internalization (Gödel, Artëmov)

If LP " F then for some proof polynomial p, LP " p:F

Realization of S4 in the Logic of Proofs LP (Artëmov):

For each theorem F of S4 one can recover a witness

(proof polynomial) for each occurrence of ! in F in such

a way that the resulting formula Fr is derivable in LP.

Realization gives a semantics of proofs for S4.

S4 " F ⇔ ∃r LP " Fr
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Natural semantics of LP in real proofs

Interpretation ∗ is determined by

1. a proof formula Proof (x, y) with natural operations

on proofs for ·, +, and !;

2. an interpretation of proof variables and constants by

numerals;

3. an interpretation of propositional variables by arith-

metical sentences.

Interpretation respects Boolean connectives and

(p:F )∗ = Proof (p∗, F ∗).
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Artëmov’s arithmetical completeness theorem

LP specifies all valid logical principles about proofs in its

language, i.e., for finite constant specifications CS,

LPCS " F iff for every ∗ respecting CS, PA " F ∗
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Joining languages GL and LP

Certain principles require a mixture of both provability

and explicit proofs, e.g., negative introspection.

Sorcates: ”I know nothing except the fact of my ignorance”.

Its purely modal formulation ¬!F →!¬!F is not valid

as a provability principle. Indeed, let F be ⊥. Then ¬!⊥

reads as Consis PA and the whole formula as

Consis PA→Provable (Consis PA),

which is false, by Gödel’s Second Incompleteness Theo-

rem.
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There is no explicit negative introspection either

The principle ¬x:S→ t:(¬x:S), where x is a proof variable

and S is a propositional variable, cannot be valid. Oth-

erwise, fix an interpretation ∗ of x and t and the Goedel

proof predicate. Then there are infinitely many arith-

metical instances of S for which the antecedent holds.

Hence t∗ is a proof of infinitely many theorems, which is

impossible.
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The mixed language of proofs and provability fits

negative introspection

The principle

¬x:F →!(¬x:F)

is arithmetically provable, by Σ-completeness of PA.
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Arithmetically complete logics of proofs and provability.

• B (Artëmov, 1994): GL + LP, no operations on proofs.

• GrzB (Nogina, 1994): Grz + LP, no operations on proofs.

• LPP (Sidon-Yavorskaya, 1997): GL + LP + extra operations

on proofs.

• GLA (Nogina, 2005): GL + LP.

In this talk we introduce GrzA = Grz + LP
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The language of GrzA

Proof polynomials for GrzA are the same as for LP.

Formulas of GrzA are built according to the grammar

A = S | A→A | A ∧ A | A ∨ A | ¬A | !A | t:A .

Axioms and rules of GrzA∅:

Axioms and rules of both Grz and LP and

C1 t:F →!F Explicit-Implicit Connection

C2 ¬t:F →!¬t:F Negative Introspection
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Constant Specification CS for GrzA is defined as the

one for LP.

Note that since GrzA has more axioms than LP does, there are more

possibilities to specify constants in GrzA than in LP. This makes

proof polynomials in GrzA more expressive.

GrzACS = GrzA∅ + CS

GrzA is GrzACS for ‘total’ CS., i.e.,

CS = {c:A | c is any constant, A is any axiom}
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Internalization theorem.

If GrzA " F then for some proof polynomial p, GrzA " p:F .

Proof. Induction on a derivation of F .

Base: F is an axiom. Then use Constant Specification.

In this case, p is a proof constant.

Induction step: by internalized rules of GrzA.
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Internalization of Necessitation rule " F ⇒ " !F :

For each F there is t(x) such that GrzA " x:F → t(x):!F

1. x:F →!F - Explicit-Implicit Connection

2. a:(x:F →!F) - by Constant Specification

3. x:F →!x:(x:F) - Proof Checker

4. !x:(x:F)→(a·!x):!F - from 2, by Application

5. x:F →(a·!x):!F - from 3,4, by propositional logic.

Now put t(x) = a·!x.
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More examples

Positive Introspection: GrzA∅ " t:F →!(t:F)

1. t:F → !t:(t:F) - Proof Checker

2. !t:(t:F)→!(t:F) - Explicit-Implicit Connection

3. t:F →!(t:F) - from 1,2, by propositional logic

Stability of proof assertions: GrzA∅ " !(t:F)∨!(¬t:F)

4. ¬t:F →!(¬t:F) - Negative Introspection

5. !(t:F) ∨ !(¬t:F) - from 3,4, by propositional logic
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Kripke-style models for GrzA∅: M = (W,+, E,").

(W,+) is the usual Grz-frame, i.e.,

• W is a non-empty set of possible worlds,

• + is a finite rooted partial order (reflexive, transitive,

and antisymmetric) on W .
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Evidence relation E is a relation between proof polyno-

mials and formulas; E enjoys the following closure prop-

erties:

applicaiton: if E(s, F →G) and E(t, F), then E(s · t, G)

sum: if E(s, F) then E(s + t, F) and E(t + s, G)

proof checker: if E(t, F) then E(!t, t:F)

We read E(t, F) as

t serves as a possible evidence for F .
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Forcing: " is a forcing relation which is Kripkean on

Boolean connectives and modality !:

• " respects Boolean connectives at each world
(u"F ∧ G iff u"F and u"G; u"¬F iff u ,"F , etc.);

• u"!F iff v"F for every v ∈ W with u ≺ v,

and

• u" t:F iff 1. v"F for every v ∈ W ,
2. E(t, F).
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GrzACS-model is a GrzA∅-model in which all formulas from

a given Constant Specification CS hold.

Kripke soundness and completeness

GrzACS " F iff F holds in each GrzACS-model.
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Example: For any propositional variable P and proof

polynomial t, GrzA ," !P → t:P .

Consider the minimal evidence relation E that contains

{<c, A> | c is a constant and A is an axiom}.

Note that if E(s, F), then GrzA " s:F , Since a propositional variable

P is not provable in GrzA, GrzA ," t:P . Therefore E(t, P) is false.

Consider the singleton GrzA-model M in which P holds and which

has this evidence relation E. Then !P holds in M, and t:P does

not. Hence M is a countermodel for !P → t:P .
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Arithmetical interpretation

The union of the intended arithmetical interpretations

for Grz and LP. In particular,

(!G)∗ = G∗ ∧ Provable (G∗);

(p:F )∗ = Proof (p∗, F ∗).

An interpretation ∗ is a CS interpretation, if for all F ∈ CS,

F ∗ holds in PA.
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Absorbing finite constant specifications

For any finite constant specification CS,

GrzACS " F iff GrzA∅ "
∧

CS→F.

Finite CS’s are sufficient for representing any derivation in GrzA.

For any finite CS, arithmetical completeness of GrzA∅ easily extends

to GrzACS. With an infinite CS, GrzACS can be not arithmetically

sound.
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Arithmetical Completeness

For any finite constant specification CS,

GrzACS " F , iff for each CS-interpretation ∗, PA " F ∗.

Hence GrzA specifies the set of all principles of proofs

and strong provability in the joint language of Grz and LP.

GrzA serves as a useful theoretical prototype of logics of

knowledge with justifications.
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