ω-Degree Spectra

Alexandra A. Soskova

Sofia University

LC 2008 Bern 03.07.08

$\omega ext{-Degree Spectra}$

Alexandra A. Soskova

Degree Spectra

Degrees

 ω -Degree Spectra

Properties of the \(\omega\)-Degree Spect Minimal Pair Theorem Quasi-Minimal Degree

Outline

- Degree spectra and jump spectra
- ightharpoonup ω -enumeration degrees
- ω-degree spectra
- ▶ ω-co-spectra
- A minimal pair theorem
- Quasi-minimal degrees

$\omega ext{-Degree Spectra}$

Alexandra A. Soskova

Degree Spectr

Degrees

ω-Degree Spectra

ω-Degree Spec
Minimal Pair Theorem
Quasi-Minimal Degree

Degrees

 ω -Degree Spectra

w-Degree Spectra
Minimal Pair Theorem
Quasi-Minimal Degree

- Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k, =, \neq)$ be a countable abstract structure.
 - ▶ An enumeration f of $\mathfrak A$ is a total mapping from $\mathbb N$ onto $\mathbb N$.
 - ▶ for any $A \subseteq \mathbb{N}^a$ let $f^{-1}(A) = \{\langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in A\}.$
 - $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq).$

Degree Spectra

 ω -Enumeration Degrees

Proportion of the

ω-Degree Spectra

Minimal Pair Theorem

Quasi-Minimal Degree

Definition (L. Richter, 1981)

The Turing degree spectrum of ${\mathfrak A}$

 $DS_T(\mathfrak{A}) = \{d_T(f^{-1}(\mathfrak{A})) \mid f \text{ is an injective enumeration of } \mathfrak{A}\}$

J. Knight, Ash, Jockush, Downey, Slaman.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

ω-Enumeration Degrees

w-Degree Spectra
Minimal Pair Theorem
Quasi-Minimal Degree

Definition (Soskov, 2004)

▶ The degree spectrum of 🎗

$$DS(\mathfrak{A}) = \{d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A}\}.$$

▶ The co-spectrum of 🎗

$$\mathrm{CS}(\mathfrak{A}) = \{ \boldsymbol{b} : (\forall \boldsymbol{a} \in \mathrm{DS}(\mathfrak{A})) (\boldsymbol{b} \leq \boldsymbol{a}) \}.$$

Degree Spectra and Co-spectra

Definition

Let $\mathcal{A} \subseteq \mathcal{D}_e$. \mathcal{A} is upwards closed with respect to total enumeration degrees, if

 $\mathbf{a} \in \mathcal{A}, \mathbf{b}$ is total and $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{b} \in \mathcal{A}$.

The degree spectra are upwards closed with respect to total enumeration degrees.

 $\omega ext{-Degree Spectra}$

Alexandra A. Soskova

Degree Spectra

Degrees

w-Degree Spe

Properties of the ω-Degree Spectra
Minimal Pair Theorem
Quasi-Minimal Degree

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Enumeratior Degrees

ω-Degree

Properties of the ω-Degree Spectra

Minimal Pair Theorem

Quasi-Minimal Degree

Let $A \subseteq \mathcal{D}_e$ be upwards closed with respect to total enumeration degrees. Denote by

$$\textit{co}(\mathcal{A}) = \{\textit{b} : \textit{b} \in \mathcal{D}_{\textit{e}} \; \& \; (\forall \textit{a} \in \mathcal{A})(\textit{b} \leq_{\textit{e}} \textit{a})\}.$$

- ▶ $A_t = \{ \mathbf{a} : \mathbf{a} \in A \& \mathbf{a} \text{ is total} \} \Longrightarrow co(A) = co(A_t).$
- ▶ Let $\mathbf{b} \in \mathcal{D}_e$ and n > 0.

$$\mathcal{A}_{\mathbf{b},n} = \{ \mathbf{a} : \mathbf{a} \in \mathcal{A} \& \mathbf{b} \leq \mathbf{a}^{(n)} \} \Longrightarrow co(\mathcal{A}) = co(\mathcal{A}_{\mathbf{b},n}).$$

Properties of the

ω-Degree Spectra
Minimal Pair Theorem
Quasi-Minimal Degree

▶ Let $\mathbf{c} \in \mathrm{DS}_n(\mathfrak{A})$ and n > 0. Then

 $CS(\mathfrak{A}) = co(\{\mathbf{a} \mid \mathbf{a} \in DS(\mathfrak{A}) \& \mathbf{a}^{(n)} = \mathbf{c}\}).$

► A minimal pair theorem: There exist **f** and **g** in DS(𝔄):

$$(\forall \mathbf{a} \in \mathcal{D}_e)(\forall k)(\mathbf{a} \leq_e \mathbf{f}^{(k)} \& \mathbf{a} \leq_e \mathbf{g}^{(k)} \Rightarrow \mathbf{a} \in \mathrm{CS}_k(\mathfrak{A})).$$

- ► Quasi-minimal degree: There exists q₀ quasi-minimal for DS(X)
 - ▶ $q_0 \notin CS(\mathfrak{A});$
 - for every total *e*-degree **a**: $\mathbf{a} \ge_e \mathbf{q_0} \Rightarrow \mathbf{a} \in \mathrm{DS}(\mathfrak{A})$ and $\mathbf{a} \le_e \mathbf{q_0} \Rightarrow \mathbf{a} \in \mathrm{CS}(\mathfrak{A})$.
- Every countable ideal can be represented as a co-spectrum of some structure 𝔄.

ω-Degree Spectra
Minimal Pair Theorem
Quasi-Minimal Degree

- Uniform reducibility on sequences of sets
- $ightharpoonup \mathcal{S}$ the set of all sequences of sets of natural numbers
- ▶ For $\mathcal{B} = \{B_n\}_{n < \omega} \in \mathcal{S}$ call the jump class of \mathcal{B} the set

$$J_{\mathcal{B}} = \{ d_{\mathbf{T}}(X) \mid (\forall n) (B_n \text{ is c.e. in } X^{(n)} \text{ uniformly in } n) \}$$
.

- ▶ $A \leq_{\omega} \mathcal{B}$ (A is ω -enumeration reducible to \mathcal{B}) if $J_{\mathcal{B}} \subseteq J_{\mathcal{A}}$
- $ightharpoonup \mathcal{A} \equiv_{\omega} \mathcal{B} \text{ if } J_{\mathcal{A}} = J_{\mathcal{B}}.$

ω -Enumeration Degrees

 $ightharpoonup \equiv_{\omega}$ is an equivalence relation on \mathcal{S} .

- $\blacktriangleright \ \mathcal{D}_{\omega} = \{ d_{\omega}(\mathcal{B}) \mid \mathcal{B} \in \mathcal{S} \}.$
- ▶ If $A \subseteq \mathbb{N}$ denote by $A \uparrow \omega = \{A, \emptyset, \emptyset, \dots\}$.
- ▶ For every $A, B \subseteq \mathbb{N}$:

$$A \leq_{\mathrm{e}} B \iff A \uparrow \omega \leq_{\omega} B \uparrow \omega.$$

▶ The mapping $\kappa(d_e(A)) = d_\omega(A \uparrow \omega)$ gives an isomorphic embedding of \mathcal{D}_e to \mathcal{D}_ω .

 $\omega ext{-Degree Spectra}$

Alexandra A. Soskova

Degree Spectr

 ω -Enumeration Degrees

 ω -Degree Spectra

ω-Degree Spectra
Minimal Pair Theorem
Quasi-Minimal Degree

ω -Enumeration Degrees

Let
$$\mathcal{B} = \{B_n\}_{n < \omega} \in \mathcal{S}$$
.
A jump sequence $\mathcal{P}(\mathcal{B}) = \{\mathcal{P}_n(\mathcal{B})\}_{n < \omega}$:
1 $\mathcal{P}_0(\mathcal{B}) = B_0$
2 $\mathcal{P}_{n+1}(\mathcal{B}) = (\mathcal{P}_n(\mathcal{B}))' \oplus B_{n+1}$

Theorem (Soskov, Kovachev)

 $A \leq_{\omega} B$, if $A_n \leq_{\rm e} \mathcal{P}_n(B)$ uniformly in n.

 ω -Degree Spectra

Alexandra A Soskova

 ω -Enumeration **Degrees**

ω -Enumeration Jump

- ► For every $A \in S$ the ω -enumeration jump of A is $A' = \{P_{n+1}(A)\}_{n < \omega}$
- lacksquare $d_{\omega}(\mathcal{A})'=d_{\omega}(\mathcal{A}')$
- $A^{(k+1)} = (A^{(k)})'$
- $A^{(k)} = \{ \mathcal{P}_{n+k}(A) \}_{n < \omega} \text{ for each } k.$

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectr

 ω -Enumeration Degrees

 ω -Degree Spectra

ω-Degree Spectri Minimal Pair Theorem

Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ be given structures.

Definition

The relative spectrum $RS(\mathfrak{A},\mathfrak{A}_1\ldots,\mathfrak{A}_n)$ of the structure \mathfrak{A} with respect to $\mathfrak{A}_1,\ldots,\mathfrak{A}_n$ is the set

$$\{d_{\mathbf{e}}(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \& (\forall k \leq n)(f^{-1}(\mathfrak{A}_k) \leq_{\mathbf{e}} f^{-1}(\mathfrak{A})^{(k)}).\}$$

It turns out that all properties of the degree spectra remain true for the relative spectra.

ω - Degree Spectra

Let $\mathcal{B} = \{B_n\}_{n<\omega}$ be a fixed sequence of sets. The enumeration f of the structure \mathfrak{A} is acceptable with respect to \mathcal{B} , if for every n,

$$f^{-1}(B_n) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(n)}$$
 uniformly in n .

Denote by $\mathcal{E}(\mathfrak{A},\mathcal{B})$ - the class of all acceptable enumerations.

Definition

The ω - degree spectrum of $\mathfrak A$ with respect to $\mathcal B=\{B_n\}_{n<\omega}$ is the set

$$DS(\mathfrak{A},\mathcal{B}) = \{ d_{e}(f^{-1}(\mathfrak{A})) \mid f \in \mathcal{E}(\mathfrak{A},\mathcal{B}). \}$$

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

ω - Degree Spectra

- ▶ It is easy to find a structure $\mathfrak A$ and a sequence $\mathcal B$ such that $\mathrm{DS}(\mathfrak A,\mathcal B)\neq\mathrm{DS}(\mathfrak A)$.
- ▶ The notion of the ω -degree spectrum is a generalization of the relative spectrum: $RS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n) = DS(\mathfrak{A}, \mathcal{B})$, where $\mathcal{B} = \{B_k\}_{k < \omega}$,
 - \triangleright $B_0 = \emptyset$,
 - ▶ B_k is the positive diagram of the structure \mathfrak{A}_k , $k \leq n$
 - ▶ $B_k = \emptyset$ for all k > n.

$\omega ext{-Degree Spectra}$

Alexandra A. Soskova

Degree Spectra

Degrees

 ω -Degree Spectra

w-Degree Spectra
Minimal Pair Theorem
Ouasi-Minimal Degree

ω - Degree Spectra and Jump Spectra

Proposition

 $\mathrm{DS}(\mathfrak{A},\mathcal{B})$ is upwards closed with respect to total e-degrees.

Definition

The kth ω -jump spectrum of $\mathfrak A$ with respect to $\mathcal B$ is the set

$$\mathrm{DS}_k(\mathfrak{A},\mathcal{B}) = \{\mathbf{a}^{(\mathbf{k})} \mid \mathbf{a} \in \mathrm{DS}(\mathfrak{A},\mathcal{B})\}.$$

Proposition

 $DS_k(\mathfrak{A}, \mathcal{B})$ is upwards closed with respect to total e-degrees.

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

ω -Co-Spectra

For every $A \subseteq \mathcal{D}_{\omega}$ let $co(A) = \{ \mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{\omega} \& (\forall \mathbf{a} \in A)(\mathbf{b} \leq_{\omega} \mathbf{a}) \}.$

Definition

The ω -co-spectrum of $\mathfrak A$ with respect to $\mathcal B$ is the set

$$CS(\mathfrak{A}, \mathcal{B}) = co(DS(\mathfrak{A}, \mathcal{B})).$$

Definition

The kth ω -co-spectrum of $\mathfrak A$ with respect to $\mathcal B$ is the set

$$CS_k(\mathfrak{A}, \mathcal{B}) = co(DS_k(\mathfrak{A}, \mathcal{B})).$$

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

ω-Enumeratio Degrees

 ω -Degree Spectra

Properties of the ω-Degree Spectra
Minimal Pair Theorem
Ouaci-Minimal Degree

- Let \mathcal{L} be the language of the structure \mathfrak{A} . For each *n* let P_n be a new unary predicate representing the set B_n .
 - An elementary Σ_0^+ formula is an existential formula of the form
 - $\exists Y_1 \dots \exists Y_m \Phi(W_1, \dots, W_r, Y_1, \dots, Y_m)$, where Φ is a finite conjunction of atomic formulae in $\mathcal{L} \cup \{P_0\}$;
 - ightharpoonup A Σ_n^+ formula is a c.e. disjunction of elementary Σ_n^+ formulae:
 - ▶ An elementary Σ_{n+1}^+ formula is a formula of the form $\exists Y_1 \dots \exists Y_m \Phi(W_1, \dots, W_r, Y_1, \dots, Y_m)$, where Φ is a finite conjunction of atoms of the form $P_{n+1}(Y_i)$ or $P_{n+1}(W_i)$ and Σ_n^+ formulae or negations of Σ_n^+ formulae in $\mathcal{L} \cup \{P_0\} \cup \cdots \cup \{P_n\}$.

Definition

The sequence $\mathcal{A} = \{A_n\}_{n<\omega}$ is formally k-definable on \mathfrak{A} with respect to \mathcal{B} if there exists a computable sequence $\{\Phi^{\gamma(n,x)}(W_1,\ldots,W_r)\}_{n,x<\omega}$ of Σ_{n+k}^+ formulae and elements t_1,\ldots,t_r of $\mathbb N$ such that for every $x\in\mathbb N$, the following equivalence holds:

$$x \in A_n \iff (\mathfrak{A}, \mathcal{B}) \models \Phi^{\gamma(n,x)}(W_1/t_1, \ldots, W_r/t_r).$$

Theorem

The sequence \mathcal{A} is formally k-definable on \mathfrak{A} with respect to \mathcal{B} iff $d_{\omega}(\mathcal{A}) \in \mathrm{CS}_k(\mathfrak{A}, \mathcal{B})$.

Properties of the ω-Degree Spectra

Let $\mathcal{A} \subseteq \mathcal{D}_e$ be an upwards closed set with respect to total e-degrees.

Proposition

$$co(A) = co(\{\mathbf{a} : \mathbf{a} \in A \ \& \ \mathbf{a} \ \textit{is total}\}).$$

Corrolary

$$CS(\mathfrak{A},\mathcal{B}) = co(\{\mathbf{a} \mid \mathbf{a} \in DS(\mathfrak{A},\mathcal{B}) \& \mathbf{a} \text{ is a total e-degree}\}).$$

Let $A \subseteq \mathcal{D}_e$ be an upwards closed set with respect to total e-degrees and k > 0.

▶ There exists $\mathbf{b} \in \mathcal{D}_e$ such that

$$co(A) \neq co(\{\mathbf{a} : \mathbf{a} \in A \& \mathbf{b} \leq \mathbf{a}^{(k)}\}).$$

▶ Let n > 0. There is a structure \mathfrak{A} , a sequence \mathcal{B} and $\mathbf{c} \in \mathrm{DS}_n(\mathfrak{A},\mathcal{B})$ such that

$$CS(\mathfrak{A},\mathcal{B}) \neq co(\{\mathbf{a} \in DS(\mathfrak{A},\mathcal{B}) \mid \mathbf{a}^{(n)} = \mathbf{c}\}).$$

Minimal Pair Theorem

Theorem

For every structure $\mathfrak A$ and every sequence $\mathcal B \in \mathcal S$ there exist total enumeration degrees **f** and **g** in $DS(\mathfrak{A}, \mathcal{B})$ such that for every ω -enumeration degree **a** and $k \in \mathbb{N}$:

$$\mathbf{a} \leq_{\omega} \mathbf{f}^{(k)} \ \& \ \mathbf{a} \leq_{\omega} \mathbf{g}^{(k)} \Rightarrow \mathbf{a} \in \mathrm{CS}_k(\mathfrak{A}, \mathcal{B}) \ .$$

Corrolary

 $CS_k(\mathfrak{A},\mathcal{B})$ is the least ideal containing all kth ω -jumps of the elements of $CS(\mathfrak{A},\mathcal{B})$.

- ▶ $I = CS(\mathfrak{A}, \mathcal{B})$ is a countable ideal;
- $CS(\mathfrak{A},\mathcal{B}) = I(\mathbf{f}) \cap I(\mathbf{g});$
- ▶ $I^{(k)}$ the least ideal, containing all kth ω -jumps of the elements of I;
- ► (Ganchev) $I = I(\mathbf{f}) \cap I(\mathbf{g}) \Longrightarrow I^{(k)} = I(\mathbf{f}^{(k)}) \cap I(\mathbf{g}^{(k)})$ for every k;
- ▶ $I(\mathbf{f}^{(k)}) \cap I(\mathbf{g}^{(k)}) = \mathrm{CS}_k(\mathfrak{A}, \mathcal{B})$ for each k
- ▶ Thus $I^{(k)} = CS_k(\mathfrak{A}, \mathcal{B})$.

There is a countable ideal I of ω -enumeration degrees for which there is no structure $\mathfrak A$ and sequence $\mathcal B$ such that $I = CS(\mathfrak{A}, \mathcal{B}).$

- $A = \{0, 0', 0'', \dots, 0^{(n)}, \dots\};$
- $I = I(A) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{D}_{\omega} \& (\exists n) (\mathbf{a} \leq_{\omega} \mathbf{0}^{(n)}) \} \mathbf{a} \}$ countable ideal generated by A.
- ightharpoonup Assume that there is a structure $\mathfrak A$ and a sequence $\mathcal B$ such that $I = CS(\mathfrak{A}, \mathcal{B})$
- ▶ Then there is a minimal pair **f** and **g** for $DS(\mathfrak{A}, \mathcal{B})$, so $I^{(n)} = I(\mathbf{f}^{(n)}) \cap I(\mathbf{q}^{(n)})$ for each n.
- **f** > **0**⁽ⁿ⁾ and **q** > **0**⁽ⁿ⁾ for each n.
- Then by Enderton and Putnam [1970], Sacks [1971]: $\mathbf{f}'' > \mathbf{0}^{(\omega)}$ and $\mathbf{q}'' > \mathbf{0}^{(\omega)}$.
- ▶ Hence $I'' \neq I(\mathbf{f}'') \cap I(\mathbf{g}'')$. A contradiction.

ω-Degree Spectra

ω-Degree Spectr
Minimal Pair Theorem
Quasi-Minimal Degree

Theorem

For every structure $\mathfrak A$ and every sequence $\mathcal B$, there exists $F\subseteq \mathbb N$, such that $\mathbf q=d_\omega(F\uparrow\omega)$ and:

- 1. $\mathbf{q} \notin \mathrm{CS}(\mathfrak{A}, \mathcal{B})$;
- 2. If **a** is a total e-degree and $\mathbf{a} \geq_{\omega} \mathbf{q}$ then $\mathbf{a} \in DS(\mathfrak{A}, \mathcal{B})$
- 3. If **a** is a total e-degree and **a** \leq_{ω} **q** then **a** \in CS($\mathfrak{A}, \mathcal{B}$).

ω -degree spectra

Questions:

- ▶ Is it true that for every structure $\mathfrak A$ and every sequence $\mathcal B$ there exists a structure $\mathfrak B$ such that $\mathrm{DS}(\mathfrak B)=\mathrm{DS}(\mathfrak A,\mathcal B)$?
- If for a countable ideal $I \subseteq \mathcal{D}_{\omega}$ there is an exact pair then are there a structure \mathfrak{A} and a sequence \mathcal{B} so that $\mathrm{CS}(\mathfrak{A},\mathcal{B}) = I$?

 $\omega ext{-Degree Spectra}$

Alexandra A. Soskova

Degree Spectra

Degrees

 ω -Degree Spectra

Properties of the w-Degree Spectr Minimal Pair Theorem Quasi-Minimal Degree Soskov, I. N., Kovachev, B. Uniform regular enumerations *Mathematical Structures in Comp. Sci.* 16 no. 5, 901–924, (2006)

Soskov, I. N. The ω -enumeration degrees, *J. Logic* and Computation bf 17 no. 6, 1193-1214 (2007)

Soskov, I. N., Ganchev H. The jump operator on the ω -enumeration degrees. Ann. Pure Appl. Logic, to appear.

Soskova, A. A. Relativized degree spectra. J. Logic and Computation 17, no. 6, 1215-1233 (2007)

 $\omega ext{-Degree Spectra}$

Alexandra A. Soskova

Degree Spectra

o-Enumeratio Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree