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Enumeration of a Structure

Let A = (N; R1, . . . , Rk ,=, 6=) be a countable abstract
structure.

I An enumeration f of A is a total mapping from N onto
N.

I for any A ⊆ Na let
f−1(A) = {〈x1 . . . xa〉 : (f (x1), . . . , f (xa)) ∈ A}.

I f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk )⊕ f−1(=)⊕ f−1(6=).



ω-Degree Spectra

Alexandra A.
Soskova

Degree Spectra

ω-Enumeration
Degrees

ω-Degree Spectra

Properties of the
ω-Degree Spectra
Minimal Pair Theorem

Quasi-Minimal Degree

Degree Spectra

Definition (L. Richter, 1981)
The Turing degree spectrum of A

DST(A) = {dT(f−1(A)) | f is an injective enumeration of A}

I J. Knight, Ash, Jockush, Downey, Slaman.
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Degree Spectra and Co-spectra

Definition (Soskov, 2004)

I The degree spectrum of A

DS(A) = {de(f−1(A)) | f is an enumeration of A}.

I The co-spectrum of A

CS(A) = {b : (∀a ∈ DS(A))(b ≤ a)}.
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Degree Spectra and Co-spectra

Definition
Let A ⊆ De. A is upwards closed with respect to total
enumeration degrees, if

a ∈ A, b is total and a ≤ b ⇒ b ∈ A.

The degree spectra are upwards closed with respect to
total enumeration degrees.
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Properties of upwards closed sets

Let A ⊆ De be upwards closed with respect to total
enumeration degrees. Denote by

co(A) = {b : b ∈ De & (∀a ∈ A)(b ≤e a)}.

I At = {a : a ∈ A & a is total} =⇒ co(A) = co(At).
I Let b ∈ De and n > 0.

Ab,n = {a : a ∈ A & b ≤ a(n)} =⇒ co(A) = co(Ab,n).
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Properties of degree spectra and co-spectra

I Let c ∈ DSn(A) and n > 0. Then

CS(A) = co({a | a ∈ DS(A) & a(n) = c}).

I A minimal pair theorem:
There exist f and g in DS(A):

(∀a ∈ De)(∀k)(a ≤e f(k) & a ≤e g(k) ⇒ a ∈ CSk (A)).

I Quasi-minimal degree:
There exists q0 quasi-minimal for DS(A)

I q0 6∈ CS(A);
I for every total e-degree a: a ≥e q0 ⇒ a ∈ DS(A) and

a ≤e q0 ⇒ a ∈ CS(A).
I Every countable ideal can be represented as a

co-spectrum of some structure A.
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ω-Enumeration Degrees

I Uniform reducibility on sequences of sets
I S the set of all sequences of sets of natural numbers
I For B = {Bn}n<ω ∈ S call the jump class of B the set

JB = {dT(X ) | (∀n)(Bn is c.e. in X (n) uniformly in n)} .

I A ≤ω B (A is ω-enumeration reducible to B) if
JB ⊆ JA

I A ≡ω B if JA = JB.
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ω-Enumeration Degrees

I ≡ω is an equivalence relation on S.
I dω(B) = {A | A ≡ω B}
I Dω = {dω(B) | B ∈ S}.
I If A ⊆ N denote by A ↑ ω = {A, ∅, ∅, . . . }.
I For every A, B ⊆ N:

A ≤e B ⇐⇒ A ↑ ω ≤ω B ↑ ω.

I The mapping κ(de(A)) = dω(A ↑ ω) gives an
isomorphic embedding of De to Dω.
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ω-Enumeration Degrees

Let B = {Bn}n<ω ∈ S.
A jump sequence P(B) = {Pn(B)}n<ω:

1 P0(B) = B0

2 Pn+1(B) = (Pn(B))′ ⊕ Bn+1

Theorem (Soskov, Kovachev)
A ≤ω B, if An ≤e Pn(B) uniformly in n.
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ω-Enumeration Jump

I For every A ∈ S the ω-enumeration jump of A is
A′ = {Pn+1(A)}n<ω

I dω(A)′ = dω(A′)

I A(k+1) = (A(k))′

I dω(A)(k+1) = dω(A(k+1))

I A(k) = {Pn+k (A)}n<ω for each k .
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Relative Spectra

Let A1, . . . ,An be given structures.

Definition
The relative spectrum RS(A,A1 . . . , An) of the structure A

with respect to A1, . . . , An is the set

{de(f−1(A)) | f is an enumeration of A &

(∀k ≤ n)(f−1(Ak ) ≤e f−1(A)(k)).}

It turns out that all properties of the degree spectra
remain true for the relative spectra.
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ω- Degree Spectra

Let B = {Bn}n<ω be a fixed sequence of sets.
The enumeration f of the structure A is acceptable with
respect to B, if for every n,

f−1(Bn) ≤e f−1(A)(n) uniformly in n.

Denote by E(A,B) - the class of all acceptable
enumerations.

Definition
The ω- degree spectrum of A with respect to
B = {Bn}n<ω is the set

DS(A,B) = {de(f−1(A)) | f ∈ E(A,B).}
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ω- Degree Spectra

I It is easy to find a structure A and a sequence B
such that DS(A,B) 6= DS(A).

I The notion of the ω-degree spectrum is a
generalization of the relative spectrum:
RS(A,A1, . . . ,An) = DS(A,B), where B = {Bk}k<ω,

I B0 = ∅,
I Bk is the positive diagram of the structure Ak , k ≤ n
I Bk = ∅ for all k > n.
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ω- Degree Spectra and Jump Spectra

Proposition
DS(A,B) is upwards closed with respect to total
e-degrees.

Definition
The kth ω-jump spectrum of A with respect to B is the set

DSk (A,B) = {a(k) | a ∈ DS(A,B)}.

Proposition
DSk (A,B) is upwards closed with respect to total
e-degrees.
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ω-Co-Spectra

For every A ⊆ Dω let
co(A) = {b | b ∈ Dω & (∀a ∈ A)(b ≤ω a)}.

Definition
The ω-co-spectrum of A with respect to B is the set

CS(A,B) = co(DS(A,B)).

Definition
The kth ω-co-spectrum of A with respect to B is the set

CSk (A,B) = co(DSk (A,B)).
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Normal Form Theorem

Let L be the language of the structure A. For each n let
Pn be a new unary predicate representing the set Bn.

I An elementary Σ+
0 formula is an existential formula of

the form
∃Y1 . . .∃YmΦ(W1, . . . , Wr , Y1, . . . , Ym), where Φ is a
finite conjunction of atomic formulae in L ∪ {P0};

I A Σ+
n formula is a c.e. disjunction of elementary Σ+

n
formulae;

I An elementary Σ+
n+1 formula is a formula of the form

∃Y1 . . .∃YmΦ(W1, . . . , Wr , Y1, . . . , Ym), where Φ is a
finite conjunction of atoms of the form Pn+1(Yj) or
Pn+1(Wi) and Σ+

n formulae or negations of Σ+
n

formulae in L ∪ {P0} ∪ · · · ∪ {Pn}.
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Normal Form Theorem

Definition
The sequence A = {An}n<ω is formally k-definable on A

with respect to B if there exists a computable sequence
{Φγ(n,x)(W1, . . . , Wr )}n,x<ω of Σ+

n+k formulae and
elements t1, . . . , tr of N such that for every x ∈ N, the
following equivalence holds:

x ∈ An ⇐⇒ (A,B) |= Φγ(n,x)(W1/t1, . . . , Wr/tr ).

Theorem
The sequence A is formally k -definable on A with respect
to B iff dω(A) ∈ CSk (A,B).
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Properties of upwards closed sets

Let A ⊆ De be an upwards closed set with respect to total
e-degrees.

Proposition
co(A) = co({a : a ∈ A & a is total}).

Corrolary
CS(A,B) = co({a | a ∈ DS(A,B) & a is a total e-degree}).



ω-Degree Spectra

Alexandra A.
Soskova

Degree Spectra

ω-Enumeration
Degrees

ω-Degree Spectra

Properties of the
ω-Degree Spectra
Minimal Pair Theorem

Quasi-Minimal Degree

Negative results (Vatev)

Let A ⊆ De be an upwards closed set with respect to total
e-degrees and k > 0.

I There exists b ∈ De such that

co(A) 6= co({a : a ∈ A & b ≤ a(k)}).

I Let n > 0. There is a structure A, a sequence B and
c ∈ DSn(A,B) such that

CS(A,B) 6= co({a ∈ DS(A,B) | a(n) = c}).
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Minimal pair theorem

Theorem
For every structure A and every sequence B ∈ S there
exist total enumeration degrees f and g in DS(A,B) such
that for every ω-enumeration degree a and k ∈ N:

a ≤ω f(k) & a ≤ω g(k) ⇒ a ∈ CSk (A,B) .



ω-Degree Spectra

Alexandra A.
Soskova

Degree Spectra

ω-Enumeration
Degrees

ω-Degree Spectra

Properties of the
ω-Degree Spectra
Minimal Pair Theorem

Quasi-Minimal Degree

Countable ideals of ω-enumeration degrees

Corrolary
CSk (A,B) is the least ideal containing all kth ω-jumps of
the elements of CS(A,B).

I I = CS(A,B) is a countable ideal;
I CS(A,B) = I(f) ∩ I(g);
I I(k) - the least ideal, containing all k th ω-jumps of the

elements of I;
I (Ganchev)

I = I(f) ∩ I(g) =⇒ I(k) = I(f(k)) ∩ I(g(k)) for every k ;
I I(f(k)) ∩ I(g(k)) = CSk (A,B) for each k
I Thus I(k) = CSk (A,B).
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Countable ideals of ω-enumeration degrees

There is a countable ideal I of ω-enumeration degrees for
which there is no structure A and sequence B such that
I = CS(A,B).

I A = {0, 0′, 0′′, . . . , 0(n), . . . };
I I = I(A) = {a | a ∈ Dω & (∃n)(a ≤ω 0(n))} - a

countable ideal generated by A.
I Assume that there is a structure A and a sequence B

such that I = CS(A,B)

I Then there is a minimal pair f and g for DS(A,B), so
I(n) = I(f(n)) ∩ I(g(n)) for each n.

I f ≥ 0(n) and g ≥ 0(n) for each n.
I Then by Enderton and Putnam [1970], Sacks [1971]:

f′′ ≥ 0(ω) and g′′ ≥ 0(ω).
I Hence I′′ 6= I(f′′) ∩ I(g′′). A contradiction.
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Quasi-Minimal Degree

Theorem
For every structure A and every sequence B, there exists
F ⊆ N, such that q = dω(F ↑ ω) and:

1. q 6∈ CS(A,B);
2. If a is a total e-degree and a ≥ω q then a ∈ DS(A,B)

3. If a is a total e-degree and a ≤ω q then a ∈ CS(A,B).
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ω-degree spectra

I Questions:
I Is it true that for every structure A and every

sequence B there exists a structure B such that
DS(B) = DS(A,B)?

I If for a countable ideal I ⊆ Dω there is an exact pair
then are there a structure A and a sequence B so
that CS(A,B) = I?
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