# Relative Models of Constructive Set Theory

Albert Ziegler

LC08

Bern, 08. 07. 2008



## Relative Models of Set Theory

- Use set theory in the background and in the foreground
- Consider models which are classes
- Examples
  - □ Inner Models
  - □ Forcing
  - □ Realizability Models (constructive settings only)



## Heyting Models

- Intuitionistic Analogon to Forcing with Boolean Algebras
- Input: complete Heyting Algebra H
- Output: Class Model of constructive Set Theory
- (In predicative settings, formal topologies are preferable to Heyting algebras)

#### The Universe

- Sets contain not only information about what elements lie in them, but also about the truth value of an element lying in them
- All sets are hereditarily H-valued
- Ranks of V(H) defined recursively by

$$V(H)_{\alpha} = \bigcup_{\beta \in \alpha} \{ f : a \to H | a \subseteq V(H)_{\beta} \}$$

#### Semantics

Assign truth values to formulas with parameters from V(H) recursively, e.g.

$$[\![\Phi_1 \land \Phi_2]\!] = [\![\Phi_1]\!] \land [\![\Phi_2]\!]$$

- (For atomic formuluae, a simultanious recursion over the parameters in necessary for extensionality)
- Formulas with value T are said to hold in the model



## Realizability Models

- Originally known from arithmetic
- Arise from BHK-interpretation of intuitionistic logic
- Input: Partial Combinatory Algebra
- Output: Class Model of constructive Set Theory

#### The Universe

- Sets contain not only information about what elements lie in them, but can also give a computational content for them (realizer)
- V(A) defined recursively

$$V(A)_{\alpha} = \bigcup_{\beta \in \alpha} \wp \left( A \times V(A)_{\beta} \right)$$



#### Semantics

- Define recursively on Φ a realizability relation e ⊩ Φ
- (For atomic formuluae, a simultanious recursion over the parameters in necessary for extensionality)
- A formula realized by any realizer is said to hold in the model

#### M

## A common generalization

- Upgrade formal topology with application operation
- $\blacksquare$  Get rid of the equivalence relation t  $\simeq$  s
- Use instead a partial order t ≤ s
- Idea: Some information / credibility may be lost by application
  - => applicative Topologies



## **Applicative Topologies**

- Formal Topology S with partial binary operation and elements k, s
- Write t ≤ t' if one term denotes exactly when the other one does and when in this case the value of t is covered by the singleton of the value of t'.
- Specify some realizers "convincing", in particular k und s

#### w

#### **Axioms**

- 1.  $pp' \downarrow , a \lhd p, b \lhd p' \rightarrow ab \lhd pp'$
- 2.  $xy\downarrow, x\in\nabla, y\in\nabla\to xy\in\nabla$
- 3.  $kxy \le x$
- 4.  $sxy \downarrow$
- 5.  $sxyz \leq xz(yz)$
- 6.  $\nabla \ni x \lhd \emptyset \to \bot$

#### w

#### The Universe

- Again, sets are hereditarily valued by elements of the input (i.e. the applicative topology)
- So V(S) is defined recursively by

$$V(S)_{\alpha} = \bigcup_{\beta \in \alpha} a \in \mathcal{D}(S \times V(S)_{\beta})$$

 (As a technical nicety, let all sets be saturated with respect to covering)

#### Semantics

- e ⊩ ⊥ falls e ⊲ ∅
- 2.  $e \Vdash x \in y \text{ falls } e \triangleleft y^{-1}x$
- 3.  $e \Vdash x \in y \text{ falls } e \triangleleft \{f \in S | \exists z \in Bi(y). lf \Vdash z \in y \land rf \Vdash x = y\}$
- 4.  $e \Vdash x = y \text{ falls } \forall z \in Bi(x) \ \forall f \Vdash z \in x \text{ lef } \Vdash z \in y \text{ und}$  $\forall z \in Bi(y) \ \forall f \Vdash z \in y \text{ ref } \Vdash z \in x$
- 5.  $e \Vdash \phi \land \psi$  falls  $le \Vdash \phi \land re \Vdash \psi$
- 6.  $e \Vdash \phi \lor \psi$  falls  $e \lhd \{f \in S | (lf \unlhd l \land rf \Vdash \phi) \lor (lf \unlhd r \land rf \Vdash \psi) \}$
- 7.  $e \Vdash \phi \rightarrow \psi$  falls  $\forall f \in S$ .  $f \Vdash \phi \rightarrow ef \Vdash \psi$
- 8.  $e \Vdash \forall x \phi(x) \text{ falls } \forall a \in V(S)e \Vdash \phi[a]$
- 9.  $e \Vdash \exists x \phi(x) \text{ falls } e \lhd \{f \in S | \exists a \in V(S) f \Vdash \phi[a]\}$



## Advantages

- Common generalization of realizability and Heyting models
- Higher abstraction level leads to increased efficiency in proofs, more general results (partly also for the special cases)
- Some interesting applicative topologies are really new, lead to new results



 Powerset, Separation (so the construction works also for IZF)



- Powerset, Separation (so the construction works also for IZF)
- Choice principles only to a limited extent



- Powerset, Separation
   (so the construction works also for IZF)
- Choice principles only to a limited extent
- Regular Extension Axiom (REA)



- Powerset, Separation (so the construction works also for IZF)
- Choice principles only to a limited extent
- Regular Extension Axiom (REA)
- Relation Reflection Scheme (RRS)

#### w

- Powerset, Separation (so the construction works also for IZF)
- Choice principles only to a limited extent
- Regular Extension Axiom (REA)
- Relation Reflection Scheme (RRS)
- Further extension axioms (\*REA, \*2-REA)

## Example:

#### Relation Reflection Scheme

■ DC:  $a \in G \land D : G \rightrightarrows G$  $\Rightarrow \exists f : \mathbb{N} \rightarrow G. \ f(0) = a \land D(f(n), f(n+1))$ 

■ RDC:  $a \in \Gamma \land \Delta : \Gamma \rightrightarrows \Gamma$ ⇒  $\exists f : \mathbb{N} \rightarrow \Gamma . f(0) = a \land \Delta (f(n), f(n+1))$ 

RRS – what takes DC to RDC:

$$a \in \Gamma \land \Delta : \Gamma \rightrightarrows \Gamma \Rightarrow \exists G \subseteq \Gamma . a \in G \land \Delta : G \rightrightarrows G$$

#### м

## Realizing RRS

- Realizer of RSS must take realizers f of  $a \in \Gamma \land \Delta : \Gamma \rightrightarrows \Gamma$  to realizers of  $\exists G \subseteq \Gamma . a \in G \land \Delta : G \rightrightarrows G$
- Consider  $\Gamma_{int}$ :={(e,g) | e  $\Vdash$   $\Gamma$ (g)} (f<sub>0</sub>, a)  $\in$   $\Gamma_{int}$
- For all (e,g)  $\in \Gamma_{int}$  exist (f<sub>1</sub>e,g')  $\in \Gamma_{int}$  such that f<sub>2</sub>  $\Vdash \Delta(g,g')$
- lacksquare Gives rise to binary relation  $\Delta_{int}$  on  $\Gamma_{int}$

## Realizing RRS (continued)

- By RRS in the background theory, find  $G \subseteq \Gamma_{int}$  with  $(f_0, a) \in G$  and:
- For all (e,g)  $\in$  G exist (f<sub>1</sub>e,g')  $\in$  G such that f<sub>2</sub>  $\Vdash$  Δ(g,g')
- So a realizer which can be easily obtained from f realizes

$$\exists G \subseteq \Gamma. \ a \in G \land \Delta : G \rightrightarrows G$$



### The End

- Questions
- Comments
- **...**